A topological horseshoe in the hyperchaotic Rossler attractor

This Letter reports a horseshoe with two-directional expansion in the 4D hyperchaotic Rossler system. In order to show that it is indeed a horseshoe with two-dimensional expansion, some simple results on topological horseshoe which are applicable to 3D hyperchaotic maps are presented. In this way, a computer-assisted verification of hyperchaoticity is presented.

[1]  Marian Gidea,et al.  Covering relations for multidimensional dynamical systems , 2004 .

[2]  Giuseppe Grassi,et al.  Experimental realization of observer-based hyperchaos synchronization , 2001 .

[3]  Laurent Larger,et al.  Communicating with Optical Hyperchaos , 2001 .

[4]  L. Chua,et al.  Hyper chaos: Laboratory experiment and numerical confirmation , 1986 .

[5]  Yun Tang,et al.  A note on entropy of 3-buffer flow model , 2005 .

[6]  XIAO-SONG YANG,et al.  On Entropy of Chua's Circuits , 2005, Int. J. Bifurc. Chaos.

[7]  S. Mascolo,et al.  Synchronisation of hyperchaotic oscillators using a scalar signal , 1998 .

[8]  A. Szymczak The Conley index and symbolic dynamics , 1996 .

[9]  Xiao-Song Yang,et al.  Existence of Horseshoe in a Foodweb Model , 2004, Int. J. Bifurc. Chaos.

[10]  Xiao-Song Yang,et al.  A planar topological horseshoe theory with applications to computer verifications of chaos , 2005 .

[11]  Michael T. Heath,et al.  Scientific Computing: An Introductory Survey , 1996 .

[12]  John Guckenheimer,et al.  Chaos in the Hodgkin-Huxley Model , 2002, SIAM J. Appl. Dyn. Syst..

[13]  P. Zgliczynski Computer assisted proof of chaos in the Rössler equations and in the Hénon map , 1997 .

[14]  Xiao-Song Yang,et al.  A rigorous verification of chaos in an inertial two-neuron system , 2004 .

[15]  Xiao-Song Yang,et al.  Horseshoes in piecewise continuous maps , 2004 .

[16]  Qingdu Li,et al.  Horseshoe in a two-scroll control system , 2004 .

[17]  O. Rössler An equation for hyperchaos , 1979 .

[18]  Otto E. Rössler Horseshoe-map chaos in the Lorenz equation , 1977 .

[19]  Xiao-Song Yang,et al.  Horseshoe Chaos in Cellular Neural Networks , 2006, Int. J. Bifurc. Chaos.

[20]  Xiao-Song Yang,et al.  Chaoticity of some chemical attractors: a computer assisted proof , 2005 .

[21]  Laurent Larger,et al.  Communicating with optical hyperchaos: information encryption and decryption in delayed nonlinear feedback systems. , 2001, Physical review letters.

[22]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[23]  Xiao-Song Yang,et al.  A new proof for existence of horseshoe in the Rössler system , 2003 .

[24]  Xiao-Song Yang,et al.  Hyperchaos in Hopfield-type neural networks , 2005, Neurocomputing.

[25]  Qingdu Li,et al.  A computer-assisted proof of chaos in Josephson junctions , 2006 .

[26]  Xiao-Song Yang,et al.  Topological horseshoes in continuous maps , 2007 .