High‐Resolution Underwater Robotic Vision‐Based Mapping and Three‐Dimensional Reconstruction for Archaeology

Documenting underwater archaeological sites is an extremely challenging problem. Sites covering large areas are particularly daunting for traditional techniques. In this paper, we present a novel approach to this problem using both an autonomous underwater vehicle (AUV) and a diver-controlled stereo imaging platform to document the submerged Bronze Age city at Pavlopetri, Greece. The result is a three-dimensional (3D) reconstruction covering 26,600 m2 at a resolution of 2 mm/pixel, the largest-scale underwater optical 3D map, at such a resolution, in the world to date. We discuss the advances necessary to achieve this result, including i) an approach to color correct large numbers of images at varying altitudes and over varying bottom types; ii) a large-scale bundle adjustment framework that is capable of handling upward of 400,000 stereo images; and iii) a novel approach to the registration and rapid documentation of an underwater excavations area that can quickly produce maps of site change. We present visual and quantitative comparisons to the authors' previous underwater mapping approaches.

[1]  S. Duntley Light in the Sea , 1963 .

[2]  Amanda Bowens,et al.  Underwater archaeology : the NAS guide to principles and practice , 2009 .

[3]  Matthew Johnson-Roberson,et al.  Mapping Submerged Archaeological Sites using Stereo‐Vision Photogrammetry , 2013 .

[4]  G. Buchsbaum A spatial processor model for object colour perception , 1980 .

[5]  Δ. Θ. Σακελλαρίου Remote sensing techniques in the search for ancient shipwrecks : how to distinguish a wreck from a rock in geophysical recordings , 2007 .

[6]  N. Roy,et al.  Colour-Consistent Structure-from-Motion Models Using Underwater Imagery , 2013 .

[7]  Hanumant Singh,et al.  Applications of Geo-Referenced Underwater Photo Mosaics in Marine Biology and Archaeology , 2007 .

[8]  M. L. Somers,et al.  Quantitative backscatter measurements with a long-range side-scan sonar , 1989 .

[9]  Edward H. Adelson,et al.  A multiresolution spline with application to image mosaics , 1983, TOGS.

[10]  Stefan B. Williams,et al.  Out-of-Core Efficient Blending for Underwater Georeferenced Textured 3D Maps , 2013, 2013 Fourth International Conference on Computing for Geospatial Research and Application.

[11]  Stefan B. Williams,et al.  A Bayesian Nonparametric Approach to Clustering Data from Underwater Robotic Surveys , 2011 .

[12]  Stefan B. Williams,et al.  Error modeling and calibration of exteroceptive sensors for accurate mapping applications , 2010 .

[13]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Stefan B. Williams,et al.  Synergistic Clustering of Image and Segment Descriptors for Unsupervised Scene Understanding , 2013, 2013 IEEE International Conference on Computer Vision.

[15]  James H. Clark,et al.  Hierarchical geometric models for visible surface algorithms , 1976, CACM.

[16]  Stefan B. Williams,et al.  Monitoring of Benthic Reference Sites: Using an Autonomous Underwater Vehicle , 2012, IEEE Robotics & Automation Magazine.

[17]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[18]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[19]  Jon C. Henderson,et al.  Close contour survey of submerged sites using datalogging software with particular reference to Scottish crannogs , 1996 .

[20]  Yuri Rzhanov,et al.  Sensor-assisted video mosaicing for seafloor mapping , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[21]  Anthony Harding,et al.  Pavlopetri: an Underwater Bronze Age Town in Laconia , 1969, The Annual of the British School at Athens.

[22]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  M. Johnson-Roberson,et al.  Kite Aerial Photography for Low-Cost, Ultra-high Spatial Resolution Multi-Spectral Mapping of Intertidal Landscapes , 2013, PloS one.

[24]  Stefan B. Williams,et al.  Generation and visualization of large‐scale three‐dimensional reconstructions from underwater robotic surveys , 2010, J. Field Robotics.

[25]  Alex Zelinsky,et al.  Learning OpenCV---Computer Vision with the OpenCV Library (Bradski, G.R. et al.; 2008)[On the Shelf] , 2009, IEEE Robotics & Automation Magazine.

[26]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[27]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[28]  Frank Dellaert,et al.  Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing , 2006, Int. J. Robotics Res..

[29]  Hanumant Singh,et al.  Robotic tools for deep water archaeology: Surveying an ancient shipwreck with an autonomous underwater vehicle , 2010, J. Field Robotics.

[30]  Reinhard Koch,et al.  3D reconstruction based on underwater video from ROV Kiel 6000 considering underwater imaging conditions , 2009, OCEANS 2009-EUROPE.

[31]  Jeffrey G. Royal Illyrian Coastal Exploration Program (2007–2009): The Roman and Late Roman Finds and Their Contexts , 2012, American Journal of Archaeology.

[32]  Stefan B. Williams,et al.  Reconstructing pavlopetri: Mapping the world's oldest submerged town using stereo-vision , 2011, 2011 IEEE International Conference on Robotics and Automation.

[33]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[34]  Hanumant Singh,et al.  Toward large-area mosaicing for underwater scientific applications , 2003 .

[35]  Nicholas C. Flemming,et al.  The Pavlopetri Underwater Archaeology Project:: investigating an ancient submerged town , 2011 .

[36]  Stefan B. Williams,et al.  Colour-Consistent Structure-from-Motion Models using Underwater Imagery , 2012, Robotics: Science and Systems.

[37]  Paul Ozog,et al.  High-resolution Underwater Robotic Vision-based Mapping and 3D Reconstruction for Archaeology , 2016 .

[38]  Edward A. Martin,et al.  An underwater photomosaic technique using Adobe Photoshop , 2002 .

[39]  E. Coiras,et al.  Data correction for visualisation and classification of sidescan SONAR imagery , 2008 .

[40]  James H. Clark,et al.  Hierarchical geometric models for visible surface algorithms , 1976, CACM.

[41]  C. Roman,et al.  The 2005 Chios Ancient Shipwreck Survey: New Methods for Underwater Archaeology , 2009 .

[42]  Stefan B. Williams,et al.  Automated registration for multi-year robotic surveys of marine benthic habitats , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[43]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[44]  Larry H. Matthies,et al.  Two years of Visual Odometry on the Mars Exploration Rovers , 2007, J. Field Robotics.

[45]  D. Yoerger,et al.  Iron Age Shipwrecks in Deep Water off Ashkelon, Israel , 2002, American Journal of Archaeology.