Deterministic continuous-time Virtual Reference Feedback Tuning (VRFT) with application to PID design

Abstract In this paper, we introduce a data-driven control design method that does not rely on a model of the plant. The method is inspired by the Virtual Reference Feedback Tuning approach for data-driven controller tuning, but it is here entirely developed in a deterministic, continuous-time setting. A PID autotuner is then developed out of the proposed approach and its effectiveness is tested on an experimental brake-by-wire facility. The final performance is shown to outperform that of a benchmark model-based design method.

[1]  Simone Formentin,et al.  A comparison of model‐based and data‐driven controller tuning , 2014 .

[2]  T. Söderström,et al.  Instrumental variable methods for system identification , 1983 .

[3]  G. Burton Sobolev Spaces , 2013 .

[4]  Matteo Corno,et al.  Adaptive-robust friction compensation in a hybrid brake-by-wire actuator , 2014, J. Syst. Control. Eng..

[5]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[6]  Sergio M. Savaresi,et al.  Virtual reference feedback tuning: a direct method for the design of feedback controllers , 2002, Autom..

[7]  Simone Formentin,et al.  A Data-Driven Approach to Mixed-Sensitivity Control With Application to an Active Suspension System , 2013, IEEE Transactions on Industrial Informatics.

[8]  Giulio Panzani,et al.  Active motorcycle braking via direct data-driven load transfer scheduling , 2012 .

[9]  Svante Gunnarsson,et al.  Iterative feedback tuning: theory and applications , 1998 .

[10]  Kiam Heong Ang,et al.  PID control system analysis and design , 2006, IEEE Control Systems.

[11]  Kenneth A. Cunefare,et al.  Effect of Tangential Dither Signal on Friction Induced Oscillations in the SDOF Model , 2005 .

[12]  Christina Gloeckner Foundations Of Time Frequency Analysis , 2016 .

[13]  Håkan Hjalmarsson,et al.  From experiment design to closed-loop control , 2005, Autom..

[14]  Sergio M. Savaresi,et al.  Optimal input design for direct data-driven tuning of model-reference controllers , 2013, Autom..

[15]  Simone Formentin,et al.  Enhancing statistical performance of data-driven controller tuning via L2-regularization , 2014, Autom..

[16]  Sergio M. Savaresi,et al.  An Application of the Virtual Reference Feedback Tuning Method to a Benchmark Problem , 2003, Eur. J. Control.

[17]  A. Karimi,et al.  Data‐driven model reference control with asymptotically guaranteed stability , 2011 .

[18]  S. M. Savaresi,et al.  Virtual reference feedback tuning for two degree of freedom controllers , 2001, 2001 European Control Conference (ECC).

[19]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .