Combination of Fractional-Order, Adaptive Second Order and Non-Singular Terminal Sliding Mode Controls for Dynamical Systems with Uncertainty and Under-Actuation Property

[1]  Jorge Enrique Lavín Delgado,et al.  Applications of Fractional Operators in Robotics: A Review , 2022, Journal of Intelligent & Robotic Systems.

[2]  Bai Chen,et al.  A new continuous fractional-order nonsingular terminal sliding mode control for cable-driven manipulators , 2018, Adv. Eng. Softw..

[3]  Mehran Sabahi,et al.  Chattering free full-order terminal sliding-mode control for maximum power point tracking of photovoltaic cells , 2017 .

[4]  M. Badamchizadeh,et al.  Adaptive fractional-order non-singular fast terminal sliding mode control for robot manipulators , 2016 .

[5]  Shaoming He,et al.  Chattering-free adaptive fast convergent terminal sliding mode controllers for position tracking of robotic manipulators , 2016 .

[6]  Maolin Jin,et al.  A New Adaptive Sliding-Mode Control Scheme for Application to Robot Manipulators , 2016, IEEE Transactions on Industrial Electronics.

[7]  Antonella Ferrara,et al.  Third order sliding mode voltage control in microgrids , 2015, 2015 European Control Conference (ECC).

[8]  Guoliang Zhao,et al.  Fractional-Order Fast Terminal Sliding Mode Control for a Class of Dynamical Systems , 2013 .

[9]  H. Momeni,et al.  Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty , 2012 .

[10]  B. W. Hong,et al.  Design of Adaptive Sliding Mode Controller for Robotic Manipulators Tracking Control , 2011 .

[11]  Radek Matušů,et al.  Fractional order calculus in control theory , 2011 .

[12]  M. Neila,et al.  Adaptive terminal sliding mode control for rigid robotic manipulators , 2011 .

[13]  Abbas Erfanian,et al.  Higher-order sliding mode control of leg power in paraplegic FES-Cycling , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[14]  Reza Ghaderi,et al.  Fuzzy fractional order sliding mode controller for nonlinear systems , 2010 .

[15]  Muhammet Köksal,et al.  Calculation of all stabilizing fractional-order PD controllers for integrating time delay systems , 2010, Comput. Math. Appl..

[16]  Mehmet Önder Efe,et al.  Fractional Order Sliding Mode Controller Design for Fractional Order Dynamic Systems , 2010 .

[17]  Alfonso Baños,et al.  Automatic Loop Shaping in QFT Using CRONE Structures , 2008 .

[18]  Auke Jan Ijspeert,et al.  Fractional Multi-models of the Frog Gastrocnemius Muscle , 2008 .

[19]  Carlos Alberto Bavastri,et al.  Design of Optimum Systems of Viscoelastic Vibration Absorbers for a Given Material Based on the Fractional Calculus Model , 2008 .

[20]  G. Bohannan Analog Fractional Order Controller in Temperature and Motor Control Applications , 2008 .

[21]  Tzu-Chun Kuo,et al.  Adaptive Sliding-Mode Control for NonlinearSystems With Uncertain Parameters , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[22]  Thierry Floquet,et al.  Second‐order sliding mode control of underactuated mechanical systems I: Local stabilization with application to an inverted pendulum , 2008 .

[23]  Ümit Özgüner,et al.  Sliding mode control of a class of underactuated systems , 2008, Autom..

[24]  José António Tenreiro Machado,et al.  Experimental Signal Analysis of Robot Impacts in a Fractional Calculus Perspective , 2007, J. Adv. Comput. Intell. Intell. Informatics.

[25]  Y. Wang,et al.  Second-order terminal sliding mode control of uncertain multivariable systems , 2007, Int. J. Control.

[26]  Franck Plestan,et al.  Higher order sliding mode control based on integral sliding mode , 2007, Autom..

[27]  Rutuparna Panda,et al.  Fractional generalized splines and signal processing , 2006, Signal Process..

[28]  Samir Ladaci,et al.  On Fractional Adaptive Control , 2006 .

[29]  J. A. Tenreiro Machado,et al.  FRACTIONAL CONTROL OF TWO ARMS WORKING IN COOPERATION , 2006 .

[30]  J. A. Tenreiro Machado,et al.  Analysis of fractional-order robot axis dynamics , 2006 .

[31]  YangQuan Chen,et al.  UBIQUITOUS FRACTIONAL ORDER CONTROLS , 2006 .

[32]  Dongbin Zhao,et al.  Design of a stable sliding-mode controller for a class of second-order underactuated systems , 2004 .

[33]  O. Agrawal A General Formulation and Solution Scheme for Fractional Optimal Control Problems , 2004 .

[34]  Changpin Li,et al.  Chaos in Chen's system with a fractional order , 2004 .

[35]  A. J. Calderón,et al.  The fractional order lead compensator , 2004, Second IEEE International Conference on Computational Cybernetics, 2004. ICCC 2004..

[36]  Shaocheng Tong,et al.  Fuzzy adaptive sliding-mode control for MIMO nonlinear systems , 2003, IEEE Trans. Fuzzy Syst..

[37]  Arie Levant,et al.  Higher-order sliding modes, differentiation and output-feedback control , 2003 .

[38]  Mohammad Khalid Khan,et al.  Design and application of second order sliding mode control algorithms , 2003 .

[39]  Shunji Manabe,et al.  EARLY DEVELOPMENT OF FRACTIONAL ORDER CONTROL , 2003 .

[40]  R. Feynman,et al.  RECENT APPLICATIONS OF FRACTIONAL CALCULUS TO SCIENCE AND ENGINEERING , 2003 .

[41]  Zhihong Man,et al.  Non-singular terminal sliding mode control of rigid manipulators , 2002, Autom..

[42]  R. Lozano,et al.  Stabilization of the inverted pendulum around its homoclinic orbit , 2000 .

[43]  Alain Oustaloup,et al.  Frequency-band complex noninteger differentiator: characterization and synthesis , 2000 .

[44]  Frank L. Lewis,et al.  Hybrid control for a class of underactuated mechanical systems , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[45]  Naomi Ehrich Leonard,et al.  Stabilization of the pendulum on a rotor arm by the method of controlled Lagrangians , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[46]  Alain Oustaloup,et al.  From fractal robustness to the CRONE control , 1999 .

[47]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[48]  Xinghuo Yu,et al.  Terminal sliding mode control design for uncertain dynamic systems , 1998 .

[49]  G. Bartolini,et al.  Chattering avoidance by second-order sliding mode control , 1998, IEEE Trans. Autom. Control..

[50]  Antonella Ferrara,et al.  On second order sliding mode controllers , 1998 .

[51]  D. Matignon Stability properties for generalized fractional differential systems , 1998 .

[52]  N. Engheia On the role of fractional calculus in electromagnetic theory , 1997 .

[53]  Kevin M. Passino,et al.  c ○ 1997 Kluwer Academic Publishers. Printed in the Netherlands. Intelligent Control for an Acrobot , 1996 .

[54]  I. Podlubny,et al.  On Fractional Derivatives, Fractional-Order Dynamic Systems and PIW-controllers , 1997 .

[55]  Arie Levant,et al.  Higher order sliding modes as a natural phenomenon in control theory , 1996 .

[56]  Alain Oustaloup,et al.  On the CRONE Suspension , 2014 .

[57]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[58]  J. Baillieul,et al.  Control problems in super-articulated mechanical systems , 1994, IEEE Trans. Autom. Control..

[59]  A. Levant Sliding order and sliding accuracy in sliding mode control , 1993 .

[60]  S. Gulati,et al.  Control of Nonlinear Systems Using Terminal Sliding Modes , 1992, 1992 American Control Conference.

[61]  I. Kanellakopoulos,et al.  Systematic Design of Adaptive Controllers for Feedback Linearizable Systems , 1991, 1991 American Control Conference.

[62]  R. Bagley,et al.  Fractional order state equations for the control of viscoelasticallydamped structures , 1991 .

[63]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[64]  M. Ichise,et al.  An analog simulation of non-integer order transfer functions for analysis of electrode processes , 1971 .