Energy transfer-based biosensing of protease activity measured using an electroluminescent platform

We present a biosensing platform that uses spatial electroluminescent (EL) illumination combined with charge-coupled device (CCD)-based detection for fluorescence measurements. The resulting EL-CCD detector platform was used to monitor different protease activities with substrates labeled for fluorescence resonance energy transfer (FRET)-based assays. The first uses a commercial FITC/DABCYL-SNAP-25 peptide substrate to monitor the activity of the light chain derivative (LcA) of botulinum neurotoxin A, achieving a limit of detection (LOD) of 1.25 nM (62 ng/ml). The second protease activity assay measured trypsin proteolysis using peptide substrates immobilized onto semiconductor quantum dot (QD) nanoparticles with a LOD of 6.2 nM trypsin (140 ng/ml). The specific ovomucoid inhibition of trypsin activity was also monitored. The highlighted studies clearly demonstrate the utility of the EL-CCD detector platform for monitoring fluorescent-based protease activity assays with potential healthcare applications, including point-of-care diagnostics.

[1]  Igor L. Medintz,et al.  Monitoring of enzymatic proteolysis on a electroluminescent-CCD microchip platform using quantum dot-peptide substrates , 2009 .

[2]  Igor L. Medintz,et al.  Quantum-dot-based multiplexed fluorescence resonance energy transfer , 2005, SPIE BiOS.

[3]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[4]  Igor L. Medintz,et al.  Förster resonance energy transfer investigations using quantum-dot fluorophores. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[5]  T. B. Taylor,et al.  Optimization of the performance of the polymerase chain reaction in silicon-based microstructures. , 1997, Nucleic acids research.

[6]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[7]  Xiaogang Peng,et al.  Alternative Routes toward High Quality CdSe Nanocrystals , 2001 .

[8]  Igor L. Medintz,et al.  Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. , 2007, Journal of the American Chemical Society.

[9]  Igor L. Medintz,et al.  Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot–peptide conjugates , 2006, Nature materials.

[10]  J. Dixon,et al.  A Yersinia Effector and a Pseudomonas Avirulence Protein Define a Family of Cysteine Proteases Functioning in Bacterial Pathogenesis , 2002, Cell.

[11]  Igor L. Medintz,et al.  Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. , 2003, Journal of the American Chemical Society.

[12]  Yordan Kostov,et al.  A fluorescence detection platform using spatial electroluminescent excitation for measuring botulinum neurotoxin A activity. , 2008, Biosensors & bioelectronics.

[13]  Igor L. Medintz,et al.  Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. , 2005, Journal of the American Chemical Society.

[14]  R. Ala-aho,et al.  Collagenases in cancer. , 2005, Biochimie.

[15]  D. Ullmann,et al.  Design and synthesis of fluorogenic trypsin peptide substrates based on resonance energy transfer. , 1998, Analytical biochemistry.

[16]  Igor L. Medintz,et al.  Kinetics of metal-affinity driven self-assembly between proteins or peptides and CdSe-ZnS quantum dots , 2007 .

[17]  Young-Kee Kim,et al.  Plastic enzyme-linked immunosorbent assays (ELISA)-on-a-chip biosensor for botulinum neurotoxin A. , 2007, Analytica chimica acta.

[18]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[19]  Ingebrigt Sylte,et al.  Pancreatic trypsin activates human promatrix metalloproteinase-2. , 2005, Journal of molecular biology.

[20]  Lisa C Shriver-Lake,et al.  The Array Biosensor: Portable, Automated Systems , 2007, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[21]  Sheila A. Grant,et al.  Development of a protease biosensor utilizing silica nanobeads , 2007 .

[22]  Frances S. Ligler,et al.  Biosensor Detection of Botulinum Toxoid A and Staphylococcal Enterotoxin B in Food , 2005, Applied and Environmental Microbiology.

[23]  N. Rosenzweig,et al.  Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors. , 2007, Analytical chemistry.

[24]  R. Ala-aho,et al.  Matrix metalloproteinases as therapeutic targets in cancer. , 2005, Current cancer drug targets.

[25]  Christian Eggeling,et al.  Rapid analysis of Forster resonance energy transfer by two-color global fluorescence correlation spectroscopy: trypsin proteinase reaction. , 2005, Biophysical journal.

[26]  I. Richard The genetic and molecular bases of monogenic disorders affecting proteolytic systems , 2005, Journal of Medical Genetics.

[27]  James J. Schmidt,et al.  Fluorigenic Substrates for the Protease Activities of Botulinum Neurotoxins, Serotypes A, B, and F , 2003, Applied and Environmental Microbiology.

[28]  J. Matthew Mauro,et al.  Self-Assembly of CdSe−ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein , 2000 .

[29]  K. Jensen,et al.  (CdSe)ZnS core-shell quantum dots , 1997 .

[30]  Mark A Burns,et al.  Polymerase chain reaction in high surface-to-volume ratio SiO2 microstructures. , 2004, Analytical chemistry.

[31]  Gary T. Wang,et al.  Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer. , 1990, Science.

[32]  Igor L. Medintz,et al.  Multiplexed toxin analysis using four colors of quantum dot fluororeagents. , 2004, Analytical chemistry.

[33]  Yufeng Wang,et al.  Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite. , 2003, Genome research.

[34]  X. Puente,et al.  Human and mouse proteases: a comparative genomic approach , 2003, Nature Reviews Genetics.

[35]  Igor L. Medintz,et al.  Materials for Fluorescence Resonance Energy Transfer Analysis: Beyond Traditional Donor—Acceptor Combinations , 2006 .

[36]  A. Urbani,et al.  A continuous assay of hepatitis C virus protease based on resonance energy transfer depsipeptide substrates. , 1996, Analytical biochemistry.