Central limit theorem for the overlaps on the Nishimori line

The overlap distribution of the Sherrington-Kirkpatrick model on the Nishimori line has been proved to be self averaging for large volumes. Here we study the joint distribution of the rescaled overlaps around their common mean and prove that it converges to a Gaussian vector.

[1]  P. Contucci,et al.  Limit theorems for the cubic mean-field Ising model , 2023, 2303.14578.

[2]  Jean Barbier,et al.  Bayes-optimal limits in structured PCA, and how to reach them , 2022, ArXiv.

[3]  Eliran Subag,et al.  TAP approach for multispecies spherical spin glasses II: The free energy of the pure models , 2021, The Annals of Probability.

[4]  Erik Bates,et al.  Free energy in multi-species mixed $p$-spin spherical models , 2021, 2109.14790.

[5]  B. Bhattacharya,et al.  Fluctuations of the Magnetization in the p-Spin Curie–Weiss Model , 2021, Communications in Mathematical Physics.

[6]  P. Contucci,et al.  An inference problem in a mismatched setting: a spin-glass model with Mattis interaction , 2021, SciPost Physics.

[7]  Yihong Wu,et al.  The replica-symmetric free energy for Ising spin glasses with orthogonally invariant couplings , 2021, ArXiv.

[8]  Jean-Christophe Mourrat,et al.  Statistical inference of finite-rank tensors , 2021, Annales Henri Lebesgue.

[9]  P. Contucci,et al.  The Solution of the Deep Boltzmann Machine on the Nishimori Line , 2020, Communications in Mathematical Physics.

[10]  Partha Dey,et al.  Fluctuation Results for Multi-species Sherrington-Kirkpatrick Model in the Replica Symmetric Regime , 2020, Journal of Statistical Physics.

[11]  Jean Barbier,et al.  Mutual information for low-rank even-order symmetric tensor estimation , 2020 .

[12]  P. Contucci,et al.  The Multi-species Mean-Field Spin-Glass on the Nishimori Line , 2020, 2007.08891.

[13]  Jean Barbier,et al.  Overlap matrix concentration in optimal Bayesian inference , 2019, Information and Inference: A Journal of the IMA.

[14]  Matthias Löwe,et al.  Fluctuation Results for General Block Spin Ising Models , 2019, Journal of Statistical Physics.

[15]  N. Macris,et al.  The adaptive interpolation method for proving replica formulas. Applications to the Curie–Weiss and Wigner spike models , 2019, Journal of Physics A: Mathematical and Theoretical.

[16]  N. Macris,et al.  The adaptive interpolation method: a simple scheme to prove replica formulas in Bayesian inference , 2018, Probability Theory and Related Fields.

[17]  Michael I. Jordan,et al.  Fundamental limits of detection in the spiked Wigner model , 2018, 1806.09588.

[18]  Florent Krzakala,et al.  Estimation in the Spiked Wigner Model: A Short Proof of the Replica Formula , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[19]  J. Baik,et al.  Free energy of bipartite spherical Sherrington–Kirkpatrick model , 2017, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[20]  Nicolas Macris,et al.  The layered structure of tensor estimation and its mutual information , 2017, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[21]  Marc Lelarge,et al.  Fundamental limits of symmetric low-rank matrix estimation , 2016, Probability Theory and Related Fields.

[22]  Florent Krzakala,et al.  Information-theoretic thresholds from the cavity method , 2016, STOC.

[23]  B. Bhattacharya,et al.  High Temperature Asymptotics of Orthogonal Mean-Field Spin Glasses , 2015, Journal of Statistical Physics.

[24]  Wei-Kuo Chen,et al.  Fluctuations of the free energy in the mixed p-spin models with external field , 2015, 1509.07071.

[25]  S. Sen,et al.  High Temperature Asymptotics of Orthogonal Mean-Field Spin Glasses , 2015, 1507.05067.

[26]  Florent Krzakala,et al.  MMSE of probabilistic low-rank matrix estimation: Universality with respect to the output channel , 2015, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[27]  Aukosh Jagannath,et al.  Some properties of the phase diagram for mixed p-spin glasses , 2015, 1504.02731.

[28]  A. Barra,et al.  Multi-Species Mean Field Spin Glasses. Rigorous Results , 2014, Annales Henri Poincaré.

[29]  S. Chatterjee Superconcentration and Related Topics , 2014 .

[30]  D. Panchenko The free energy in a multi-species Sherrington-Kirkpatrick model , 2013, 1310.6679.

[31]  A. Barra,et al.  Multi-Species Mean Field Spin Glasses. Rigorous Results , 2013, 1307.5154.

[32]  D. Panchenko The Sherrington-Kirkpatrick Model , 2013 .

[33]  P. Contucci,et al.  Perspectives on Spin Glasses , 2012 .

[34]  Dmitry Panchenko,et al.  The Parisi ultrametricity conjecture , 2011, 1112.1003.

[35]  Wei-Kuo Chen On the mixed even-spin Sherrington–Kirkpatrick model with ferromagnetic interaction , 2011, 1105.2604.

[36]  P. Contucci,et al.  Scaling Limits for Multi-species Statistical Mechanics Mean-Field Models , 2010, 1011.3216.

[37]  P. Contucci,et al.  The Ghirlanda-Guerra Identities , 2005, math-ph/0505055.

[38]  H. Nishimori,et al.  Surface Terms on the Nishimori Line of the Gaussian Edwards-Anderson Model , 2005, math-ph/0503023.

[39]  H. Nishimori,et al.  Griffiths inequalities for the Gaussian spin glass , 2004, cond-mat/0403625.

[40]  M. Aizenman,et al.  Extended variational principle for the Sherrington-Kirkpatrick spin-glass model , 2003 .

[41]  F. Guerra Broken Replica Symmetry Bounds in the Mean Field Spin Glass Model , 2002, cond-mat/0205123.

[42]  F. Guerra,et al.  The Thermodynamic Limit in Mean Field Spin Glass Models , 2002, cond-mat/0204280.

[43]  Pisa,et al.  Quadratic replica coupling in the Sherrington-Kirkpatrick mean field spin glass model , 2002, cond-mat/0201091.

[44]  Pisa,et al.  Central limit theorem for fluctuations in the high temperature region of the Sherrington-Kirkpatrick spin glass model , 2002, cond-mat/0201092.

[45]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[46]  F. Rosati,et al.  Some exact results on the ultrametric overlap distribution in mean field spin glass models (I) , 2000, cond-mat/0002342.

[47]  F. Guerra,et al.  General properties of overlap probability distributions in disordered spin systems. Towards Parisi ultrametricity , 1998, cond-mat/9807333.

[48]  M. Aizenman,et al.  On the Stability of the Quenched State in Mean-Field Spin-Glass Models , 1997, cond-mat/9712129.

[49]  D. Ruelle,et al.  Some rigorous results on the Sherrington-Kirkpatrick spin glass model , 1987 .

[50]  R. Ellis,et al.  The statistics of Curie-Weiss models , 1978 .

[51]  Wei-Kuo Chen On the Almeida-Thouless transition line in the SK model with centered Gaussian external field , 2021 .

[52]  Tim Austin Mean field models for spin glasses , 2012 .

[53]  M. Talagrand Mean Field Models for Spin Glasses , 2011 .

[54]  M. Talagrand The parisi formula , 2006 .

[55]  西森 秀稔 Statistical physics of spin glasses and information processing : an introduction , 2001 .

[56]  S. Kak Information, physics, and computation , 1996 .

[57]  Leonid Pastur,et al.  Absence of self-averaging of the order parameter in the Sherrington-Kirkpatrick model , 1991 .

[58]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[59]  R. Ellis,et al.  Entropy, large deviations, and statistical mechanics , 1985 .

[60]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.