Automorphy for some l-adic lifts of automorphic mod l Galois representations. II

We extend the results of [CHT] by removing the ‘minimal ramification’ condition on the lifts. That is we establish the automorphy of suitable conjugate self-dual, regular (de Rham with distinct Hodge–Tate numbers), l-adic lifts of certain automorphic mod l Galois representations of any dimension. The main innovation is a new approach to the automorphy of non-minimal lifts which is closer in spirit to the methods of [TW] than to those of [W], which relied on Ihara’s lemma.

[1]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .

[2]  A. Grothendieck Étude locale des schémas et des morphismes de schémas , 1964 .

[3]  J. Cassels,et al.  ABELIAN l -ADIC REPRESENTATIONS AND ELLIPTIC CURVES , 1969 .

[4]  Jacques Tits,et al.  Groupes réductifs sur un corps local , 1972 .

[5]  E. Cline,et al.  Cohomology of finite groups of lie type, I , 1975 .

[6]  T. Shintani On an explicit formula for class-$1$ “Whittaker functions” on $GL_n $ over $\beta $-adic fields , 1976 .

[7]  A. Borel,et al.  Automorphic Forms, Representations, and L-Functions , 1979 .

[8]  Hervé Jacquet,et al.  Conducteur des représentations du groupe linéaire , 1981 .

[9]  J. Shalika,et al.  On Euler Products and the Classification of Automorphic Forms II , 1981 .

[10]  Irving Reiner,et al.  Methods of Representation Theory , 1981 .

[11]  J. Fontaine,et al.  Construction de représentations $p$-adiques , 1982 .

[12]  M. Reid,et al.  Commutative ring theory: Regular rings , 1987 .

[13]  J. Arthur,et al.  Simple algebras, base change, and the advanced theory of the trace formula , 1989 .

[14]  L. Clozel On the cohomology of Kottwitz’s arithmetic varieties , 1993 .

[15]  Ravi Ramakrishna On a variation of Mazur's deformation functor , 1993 .

[16]  Kenneth A. Ribet,et al.  Modular elliptic curves and fermat's last theorem , 1993 .

[17]  B. Mazur,et al.  -Adic Monodromy and the Birch and Swinnerton-Dyer Conjecture , 1994 .

[18]  Jean-Pierre Serre Sur la semi-simplicité des produits tensoriels de représentations de groupes , 1994 .

[19]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[20]  A. Wiles,et al.  Ring-Theoretic Properties of Certain Hecke Algebras , 1995 .

[21]  J. Tilouine Deformations of Galois representations and Hecke algebras , 1996 .

[22]  Fred Diamond,et al.  The Taylor-Wiles construction and multiplicity one , 1997 .

[23]  Barry Mazur,et al.  An Introduction to the Deformation Theory of Galois Representations , 1997 .

[24]  M. Vigneras Induced R-representations of p-adic reductive groups , 1998 .

[25]  A. Roche,et al.  Types and Hecke algebras for principal series representations of split reductive p-adic groups , 1998 .

[26]  J. Dat Types et inductions pour les représentations modulaires des groupes p-adiques , 1999 .

[27]  J. Labesse,et al.  Cohomologie, stabilisation et changement de base , 1999 .

[28]  Xavier Lazarus Module Universel en Caractéristiquel > 0 Associé à un Caractère de l'Algèbre de Hecke de GL(n) sur un Corpsp-Adique, avecl ≠ p , 1999 .

[29]  A. Wiles,et al.  Base change and a problem of Serre , 2001 .

[30]  Frazier Jarvis COHOMOLOGY OF NUMBER FIELDS (Grundlehren der Mathematischen Wissenschaften 323) By J ÜRGEN N EUKIRCH , A LEXANDER S CHMIDT and K AY W INGBERG 699 pp., £61.50, ISBN 3-540-66671-0 (Springer, Berlin, 2000). , 2001 .

[31]  Richard Taylor,et al.  The Geometry and Cohomology of Some Simple Shimura Varieties. , 2002 .

[32]  Ravi Ramakrishna Deforming Galois representations and the conjectures of Serre and Fontaine-Mazur , 2002 .

[33]  M. Vigneras Schur algebras of reductive p-adic groups, I , 2003 .

[34]  Richard Taylor,et al.  Compatibility of Local and Global Langlands Correspondences , 2004, math/0412357.

[35]  Algèbres de Hecke quasi-ordinaires universelles , 2004 .

[36]  M. Harris,et al.  Ihara ’ s lemma and potential automorphy , 2005 .

[37]  Michael Harris,et al.  Automorphy for some l-adic lifts of automorphic mod l Galois representations , 2008 .