A new metal transfer process for van der Waals contacts to vertical Schottky-junction transition metal dichalcogenide photovoltaics

We develop a new technique for transferring metal contacts to create ultrathin solar cells from 2D materials. Two-dimensional transition metal dichalcogenides are promising candidates for ultrathin optoelectronic devices due to their high absorption coefficients and intrinsically passivated surfaces. To maintain these near-perfect surfaces, recent research has focused on fabricating contacts that limit Fermi-level pinning at the metal-semiconductor interface. Here, we develop a new, simple procedure for transferring metal contacts that does not require aligned lithography. Using this technique, we fabricate vertical Schottky-junction WS2 solar cells, with Ag and Au as asymmetric work function contacts. Under laser illumination, we observe rectifying behavior and open-circuit voltage above 500 mV in devices with transferred contacts, in contrast to resistive behavior and open-circuit voltage below 15 mV in devices with evaporated contacts. One-sun measurements and device simulation results indicate that this metal transfer process could enable high specific power vertical Schottky-junction transition metal dichalcogenide photovoltaics, and we anticipate that this technique will lead to advances for two-dimensional devices more broadly.

[1]  H. Jeong,et al.  Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors , 2019, Nature.

[2]  M. Terrones,et al.  Defect-Controlled Nucleation and Orientation of WSe2 on hBN: A Route to Single-Crystal Epitaxial Monolayers. , 2019, ACS nano.

[3]  David Feldman,et al.  Increasing markets and decreasing package weight for high-specific-power photovoltaics , 2018, Nature Energy.

[4]  X. Duan,et al.  WSe2/GeSe heterojunction photodiode with giant gate tunability , 2018, Nano Energy.

[5]  X. Duan,et al.  Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions , 2018, Nature.

[6]  M. L. Van de Put,et al.  Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk , 2018, npj 2D Materials and Applications.

[7]  S. Schuler,et al.  Device physics of van der Waals heterojunction solar cells , 2018, npj 2D Materials and Applications.

[8]  Kenji Watanabe,et al.  Via Method for Lithography Free Contact and Preservation of 2D Materials. , 2018, Nano letters.

[9]  Gwo-Ching Wang,et al.  Diffusion-Controlled Epitaxy of Large Area Coalesced WSe2 Monolayers on Sapphire. , 2018, Nano letters.

[10]  Artur R. Davoyan,et al.  Van der Waals Materials for Atomically-Thin Photovoltaics: Promise and Outlook , 2017, 1710.08917.

[11]  C. Li,et al.  Schottky solar cell using few-layered transition metal dichalcogenides toward large-scale fabrication of semitransparent and flexible power generator , 2017, Scientific Reports.

[12]  David A. Muller,et al.  Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures , 2017, Nature.

[13]  P. Ajayan,et al.  Experimental Determination of the Ionization Energies of MoSe2, WS2, and MoS2 on SiO2 Using Photoemission Electron Microscopy. , 2017, ACS nano.

[14]  Artur R. Davoyan,et al.  High Photovoltaic Quantum Efficiency in Ultrathin van der Waals Heterostructures. , 2017, ACS nano.

[15]  Xiaofeng Li,et al.  Optoelectronic investigation of monolayer MoS2/WSe2 vertical heterojunction photoconversion devices , 2016 .

[16]  M. Kudenov,et al.  Atomically Thin MoS2 Narrowband and Broadband Light Superabsorbers. , 2016, ACS nano.

[17]  Madan Dubey,et al.  Gold‐Mediated Exfoliation of Ultralarge Optoelectronically‐Perfect Monolayers , 2016, Advanced materials.

[18]  Artur R. Davoyan,et al.  Near-Unity Absorption in van der Waals Semiconductors for Ultrathin Optoelectronics. , 2016, Nano letters.

[19]  Bjarke S. Jessen,et al.  The hot pick-up technique for batch assembly of van der Waals heterostructures , 2016, Nature communications.

[20]  P. Taheri,et al.  Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides. , 2016, Nano letters.

[21]  Su-Huai Wei,et al.  Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier , 2016, Science Advances.

[22]  E. Yablonovitch,et al.  Near-unity photoluminescence quantum yield in MoS2 , 2015, Science.

[23]  Kenji Watanabe,et al.  Picosecond photoresponse in van der Waals heterostructures. , 2015, Nature nanotechnology.

[24]  Pinshane Y. Huang,et al.  High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity , 2015, Nature.

[25]  A. Seabaugh,et al.  Ultimate thin vertical p–n junction composed of two-dimensional layered molybdenum disulfide , 2015, Nature Communications.

[26]  D. Norris,et al.  Plasmonic Films Can Easily Be Better: Rules and Recipes , 2015, ACS photonics.

[27]  X. Duan,et al.  Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide , 2015, Nature Communications.

[28]  J. Hone,et al.  Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS 2 , Mo S e 2 , WS 2 , and WS e 2 , 2014, 1610.04671.

[29]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[30]  F. Libisch,et al.  Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction , 2014, Nano letters.

[31]  Darshana Wickramaratne,et al.  Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. , 2014, The Journal of chemical physics.

[32]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[33]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[34]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[35]  H. Zeng,et al.  Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides , 2012, Scientific Reports.

[36]  M. Fontana,et al.  Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions , 2012, Scientific Reports.

[37]  Henry J. Snaith,et al.  The perils of solar cell efficiency measurements , 2012, Nature Photonics.

[38]  Henry J. Snaith,et al.  How should you measure your excitonic solar cells , 2012 .

[39]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[40]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[41]  John A Rogers,et al.  Competing fracture in kinetically controlled transfer printing. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[42]  Christoph J. Brabec,et al.  Physics of organic bulk heterojunction devices for photovoltaic applications , 2006 .

[43]  B. Parkinson,et al.  Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides , 1982 .

[44]  W. Shockley,et al.  Photon-Radiative Recombination of Electrons and Holes in Germanium , 1954 .

[45]  A. Cuevas,et al.  Charge Carrier Separation in Solar Cells , 2015, IEEE Journal of Photovoltaics.

[46]  Federico Capasso,et al.  Nanometre optical coatings based on strong interference effects in highly absorbing media. , 2013, Nature materials.