IRIS template protection using a digital modulation paradigm

Template protection is an issue of paramount importance in the design of biometric recognition systems. In this paper we present a biometric cryptosystem applied to iris biometrics, where template security is guaranteed by means of a framework inspired by the digital modulation paradigm. Specifically, the properties of modulation constellations and turbo codes with soft-decoding are exploited to design a system with high performance in terms of both verification rates and security, even while dealing with a biometrics characterized by a high intra-class variability such as the iris. The effectiveness of the proposed approach is evaluated by performing tests on the Interval subset of the CASIA-IrisV4 database.

[1]  Boris Skoric,et al.  Security with Noisy Data: Private Biometrics, Secure Key Storage and Anti-Counterfeiting , 2007 .

[2]  Anil K. Jain,et al.  Biometric Template Security , 2008, EURASIP J. Adv. Signal Process..

[3]  Christoph Busch,et al.  Measuring privacy and security of iris fuzzy commitment , 2012, 2012 IEEE International Carnahan Conference on Security Technology (ICCST).

[4]  Andreas Uhl,et al.  Systematic Construction of Iris-Based Fuzzy Commitment Schemes , 2009, ICB.

[5]  Norimichi Tsumura,et al.  Securing BioEncoded IrisCodes against Correlation Attacks , 2011, 2011 IEEE International Conference on Communications (ICC).

[6]  Alessandro Neri,et al.  Adaptive and distributed cryptography for signature biometrics protection , 2007, Electronic Imaging.

[7]  Raymond N. J. Veldhuis,et al.  Preventing the Decodability Attack Based Cross-Matching in a Fuzzy Commitment Scheme , 2011, IEEE Transactions on Information Forensics and Security.

[8]  Martin Wattenberg,et al.  A fuzzy commitment scheme , 1999, CCS '99.

[9]  Libor Masek,et al.  MATLAB Source Code for a Biometric Identification System Based on Iris Patterns , 2003 .

[10]  Alessandro Neri,et al.  Iris Template Protection , 2015, Encyclopedia of Biometrics.

[11]  Andrew Teoh Beng Jin,et al.  High security Iris verification system based on random secret integration , 2006 .

[12]  Patrizio Campisi,et al.  Biometric template protection using turbo codes and modulation constellations , 2012, 2012 IEEE International Workshop on Information Forensics and Security (WIFS).

[13]  Wei Zhang,et al.  A design of iris recognition system at a distance , 2013, 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[14]  Andrew Beng Jin Teoh,et al.  High security Iris verification system based on random secret integration , 2006, Comput. Vis. Image Underst..

[15]  K.W. Bowyer,et al.  The Best Bits in an Iris Code , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  A. Stoianov,et al.  Security issues of Biometric Encryption , 2009, 2009 IEEE Toronto International Conference Science and Technology for Humanity (TIC-STH).

[17]  Andreas Uhl,et al.  Cancelable Iris Biometrics Using Block Re-mapping and Image Warping , 2009, ISC.

[18]  Gérard D. Cohen,et al.  Optimal Iris Fuzzy Sketches , 2007, 2007 First IEEE International Conference on Biometrics: Theory, Applications, and Systems.

[19]  Rafail Ostrovsky,et al.  Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data , 2004, SIAM J. Comput..

[20]  Norimichi Tsumura,et al.  Tokenless Cancelable Biometrics Scheme for Protecting Iris Codes , 2010, 2010 20th International Conference on Pattern Recognition.

[21]  Patrizio Campisi,et al.  Security and Privacy in Biometrics , 2013, Springer London.

[22]  Frans M. J. Willems,et al.  On information leakage in fuzzy commitment , 2010, Electronic Imaging.

[23]  John Daugman,et al.  How iris recognition works , 2002, IEEE Transactions on Circuits and Systems for Video Technology.

[24]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[25]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[26]  John G. Proakis,et al.  Digital Communications , 1983 .

[27]  Arjan Kuijper,et al.  Quantifying privacy and security of biometric fuzzy commitment , 2011, 2011 International Joint Conference on Biometrics (IJCB).

[28]  Karthik Nandakumar,et al.  A fingerprint cryptosystem based on minutiae phase spectrum , 2010, 2010 IEEE International Workshop on Information Forensics and Security.

[29]  Bernadette Dorizzi,et al.  Cancelable iris biometrics and using Error Correcting Codes to reduce variability in biometric data , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Ee-Chien Chang,et al.  Fuzzy extractors for asymmetric biometric representations , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[31]  Andreas Uhl,et al.  Statistical attack against iris-biometric fuzzy commitment schemes , 2011, CVPR 2011 WORKSHOPS.

[32]  R. Pearl Biometrics , 1914, The American Naturalist.

[33]  Feng Hao,et al.  Combining Crypto with Biometrics Effectively , 2006, IEEE Transactions on Computers.

[34]  Luminita Vasiu,et al.  Biometric Recognition - Security and Privacy Concerns , 2004, ICETE.

[35]  Christoph Busch,et al.  Alignment-free cancelable iris biometric templates based on adaptive bloom filters , 2013, 2013 International Conference on Biometrics (ICB).

[36]  Nalini K. Ratha,et al.  Cancelable iris biometric , 2008, 2008 19th International Conference on Pattern Recognition.

[37]  Patrizio Campisi,et al.  Fuzzy Commitment for Function Based Signature Template Protection , 2010, IEEE Signal Processing Letters.