Two-grid finite volume element method for linear and nonlinear elliptic problems
暂无分享,去创建一个
[1] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[2] William Layton,et al. Two-level Picard and modified Picard methods for the Navier-Stokes equations , 1995 .
[3] Xuejun Xu,et al. CASCADIC MULTIGRID FOR FINITE VOLUME METHODS FOR ELLIPTIC PROBLEMS ∗1) , 2004 .
[4] B. R. Baliga,et al. A NEW FINITE-ELEMENT FORMULATION FOR CONVECTION-DIFFUSION PROBLEMS , 1980 .
[5] Jinchao Xu. A new class of iterative methods for nonselfadjoint or indefinite problems , 1992 .
[6] Zhong-ciShi,et al. CASCADIC MULTIGRID FOR FINITE VOLUME METHODS FOR ELLIPTIC PROBLEMS , 2004 .
[7] Do Y. Kwak,et al. Multigrid algorithms for a vertex–centered covolume method for elliptic problems , 2002, Numerische Mathematik.
[8] D. Rose,et al. Some errors estimates for the box method , 1987 .
[9] Tao Lin,et al. On the Accuracy of the Finite Volume Element Method Based on Piecewise Linear Polynomials , 2001, SIAM J. Numer. Anal..
[10] Jinchao Xu. Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .
[11] Mary F. Wheeler,et al. A Two-Grid Finite Difference Scheme for Nonlinear Parabolic Equations , 1998 .
[12] T. Utnes,et al. Two-grid finite element formulations of the incompressible Navier-Stokes equations , 1997 .
[13] Haijun Wu,et al. Error estimates for finite volume element methods for general second‐order elliptic problems , 2003 .
[14] Jinchao Xu,et al. A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..
[15] Li Ronghua,et al. Generalized difference methods for a nonlinear Dirichlet problem , 1987 .
[16] Zhiqiang Cai,et al. On the finite volume element method , 1990 .
[17] A. H. Schatz,et al. An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .
[18] Jinchao Xu,et al. Error estimates on a new nonlinear Galerkin method based on two-grid finite elements , 1995 .
[19] Raytcho D. Lazarov,et al. A finite volume element method for a non-linear elliptic problem , 2005, Numer. Linear Algebra Appl..
[20] Rolf Rannacher,et al. Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .
[21] Yalchin Efendiev,et al. Multiscale finite element for problems with highly oscillatory coefficients , 2002, Numerische Mathematik.
[22] Huang Jianguo,et al. On the Finite Volume Element Method for General Self-Adjoint Elliptic Problems , 1998 .
[23] Jinchao Xu,et al. A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..
[24] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[25] Panagiotis Chatzipantelidis. Finite Volume Methods for Elliptic PDE's: A New Approach , 2002 .
[26] Chunjia Bi,et al. Superconvergence of finite volume element method for a nonlinear elliptic problem , 2007 .
[27] O. Axelsson,et al. A Two-Level Method for the Discretization of Nonlinear Boundary Value Problems , 1996 .
[28] Ronghua Li. Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods , 2000 .
[29] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[30] Shengde Liang,et al. A symmetric finite volume scheme for selfadjoint elliptic problems , 2002 .
[31] Chunjia Bi,et al. The mortar finite volume method with the Crouzeix–Raviart element for elliptic problems , 2003 .
[32] Murlan S. Corrington. Applications of the complex exponential integral , 1961 .
[33] Ilya Mishev,et al. Finite volume element methods for non-definite problems , 1999, Numerische Mathematik.
[34] Qian Li,et al. Error estimates in L2, H1 and Linfinity in covolume methods for elliptic and parabolic problems: A unified approach , 1999, Math. Comput..