Two-grid finite volume element method for linear and nonlinear elliptic problems

Two-grid finite volume element discretization techniques, based on two linear conforming finite element spaces on one coarse and one fine grid, are presented for the two-dimensional second-order non-selfadjoint and indefinite linear elliptic problems and the two-dimensional second-order nonlinear elliptic problems. With the proposed techniques, solving the non-selfadjoint and indefinite elliptic problem on the fine space is reduced into solving a symmetric and positive definite elliptic problem on the fine space and solving the non-selfadjoint and indefinite elliptic problem on a much smaller space; solving a nonlinear elliptic problem on the fine space is reduced into solving a linear problem on the fine space and solving the nonlinear elliptic problem on a much smaller space. Convergence estimates are derived to justify the efficiency of the proposed two-grid algorithms. A set of numerical examples are presented to confirm the estimates.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  William Layton,et al.  Two-level Picard and modified Picard methods for the Navier-Stokes equations , 1995 .

[3]  Xuejun Xu,et al.  CASCADIC MULTIGRID FOR FINITE VOLUME METHODS FOR ELLIPTIC PROBLEMS ∗1) , 2004 .

[4]  B. R. Baliga,et al.  A NEW FINITE-ELEMENT FORMULATION FOR CONVECTION-DIFFUSION PROBLEMS , 1980 .

[5]  Jinchao Xu A new class of iterative methods for nonselfadjoint or indefinite problems , 1992 .

[6]  Zhong-ciShi,et al.  CASCADIC MULTIGRID FOR FINITE VOLUME METHODS FOR ELLIPTIC PROBLEMS , 2004 .

[7]  Do Y. Kwak,et al.  Multigrid algorithms for a vertex–centered covolume method for elliptic problems , 2002, Numerische Mathematik.

[8]  D. Rose,et al.  Some errors estimates for the box method , 1987 .

[9]  Tao Lin,et al.  On the Accuracy of the Finite Volume Element Method Based on Piecewise Linear Polynomials , 2001, SIAM J. Numer. Anal..

[10]  Jinchao Xu Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .

[11]  Mary F. Wheeler,et al.  A Two-Grid Finite Difference Scheme for Nonlinear Parabolic Equations , 1998 .

[12]  T. Utnes,et al.  Two-grid finite element formulations of the incompressible Navier-Stokes equations , 1997 .

[13]  Haijun Wu,et al.  Error estimates for finite volume element methods for general second‐order elliptic problems , 2003 .

[14]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[15]  Li Ronghua,et al.  Generalized difference methods for a nonlinear Dirichlet problem , 1987 .

[16]  Zhiqiang Cai,et al.  On the finite volume element method , 1990 .

[17]  A. H. Schatz,et al.  An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .

[18]  Jinchao Xu,et al.  Error estimates on a new nonlinear Galerkin method based on two-grid finite elements , 1995 .

[19]  Raytcho D. Lazarov,et al.  A finite volume element method for a non-linear elliptic problem , 2005, Numer. Linear Algebra Appl..

[20]  Rolf Rannacher,et al.  Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .

[21]  Yalchin Efendiev,et al.  Multiscale finite element for problems with highly oscillatory coefficients , 2002, Numerische Mathematik.

[22]  Huang Jianguo,et al.  On the Finite Volume Element Method for General Self-Adjoint Elliptic Problems , 1998 .

[23]  Jinchao Xu,et al.  A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..

[24]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[25]  Panagiotis Chatzipantelidis Finite Volume Methods for Elliptic PDE's: A New Approach , 2002 .

[26]  Chunjia Bi,et al.  Superconvergence of finite volume element method for a nonlinear elliptic problem , 2007 .

[27]  O. Axelsson,et al.  A Two-Level Method for the Discretization of Nonlinear Boundary Value Problems , 1996 .

[28]  Ronghua Li Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods , 2000 .

[29]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[30]  Shengde Liang,et al.  A symmetric finite volume scheme for selfadjoint elliptic problems , 2002 .

[31]  Chunjia Bi,et al.  The mortar finite volume method with the Crouzeix–Raviart element for elliptic problems , 2003 .

[32]  Murlan S. Corrington Applications of the complex exponential integral , 1961 .

[33]  Ilya Mishev,et al.  Finite volume element methods for non-definite problems , 1999, Numerische Mathematik.

[34]  Qian Li,et al.  Error estimates in L2, H1 and Linfinity in covolume methods for elliptic and parabolic problems: A unified approach , 1999, Math. Comput..