Recent progress and novel applications of photonic crystal fibers

Photonic crystal fibers present a wavelength-scale periodic microstructure running along their length. Their core and two-dimensional photonic crystal might be based on varied geometries and materials, enabling light guidance due to different propagation mechanisms in an extremely large wavelength range, extending to the terahertz regions. As a result, these fibers have revolutionized the optical fiber technology by means of creating new degrees of freedom in the fiber design, fabrication and applicability. This report aims to provide a detailed statement on the recent progress and novel potential applications of photonic crystal fibers.

[1]  Bernhard Schmauss,et al.  SBS shaping and suppression by arbitrary strain distributions realized by a fiber coiling machine , 2009, 2009 IEEE/LEOS Winter Topicals Meeting Series.

[2]  Laurent Vaissie,et al.  Large-mode-area Er-doped fiber chirped-pulse amplification system for high-energy sub-picosecond pulses at 1.55 μm , 2008, SPIE LASE.

[3]  David Pines,et al.  COLLECTIVE ENERGY LOSSES IN SOLIDS , 1956 .

[4]  P. Petropoulos,et al.  High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-/spl mu/m pumped supercontinuum generation , 2006, Journal of Lightwave Technology.

[5]  Harald Ditlbacher,et al.  Plasmon dispersion relation of Au and Ag nanowires , 2003 .

[6]  J. Price,et al.  Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding. , 2001, Optics express.

[7]  David J. Richardson,et al.  Chalcogenide holey fibres , 2000 .

[8]  T. Imai,et al.  Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling , 1993 .

[9]  Réal Vallée,et al.  3.7 W fluoride glass Raman fiber laser operating at 2231 nm. , 2012, Optics express.

[10]  R. Dettmer,et al.  A neat idea [photonic crystal fibre] , 2001 .

[11]  Anders Bjarklev,et al.  Optical devices based on liquid crystal photonic bandgap fibres. , 2003, Optics express.

[12]  J. Jensen,et al.  Photonic crystal fiber long-period gratings for biochemical sensing. , 2006, Optics express.

[13]  P. Roberts,et al.  Polarization maintaining hybrid TIR / bandgap all-solid photonic crystal fiber , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[14]  Mitsunobu Miyagi,et al.  Metal-covered photonic bandgap multilayer for infrared hollow waveguides. , 2002, Applied optics.

[15]  Sergei K. Turitsyn,et al.  Random distributed feedback fiber laser , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[16]  K. Hill,et al.  Biconical-taper single-mode fiber coupler. , 1981, Optics letters.

[17]  Knight,et al.  Single-Mode Photonic Band Gap Guidance of Light in Air. , 1999, Science.

[18]  S. Leon-Saval,et al.  Hole inflation and tapering of stock photonic crystal fibres. , 2005, Optics express.

[19]  C. Headley,et al.  Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening , 2001, IEEE Photonics Technology Letters.

[20]  H Park,et al.  Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers. , 2008, Optics express.

[21]  Timothy A. Birks,et al.  Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source , 2002 .

[22]  L. Mollenauer,et al.  Time-division multiplexing of pump wavelengths to achieve ultrabroadband, flat, backward-pumped Raman gain. , 2002, Optics letters.

[23]  M. Skorobogatiy,et al.  Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. , 2006, Optics express.

[24]  N. Mortensen Photonic crystal fibres: mapping Maxwell's equations onto a Schrödinger equation eigenvalue problem , 2006, physics/0608143.

[25]  Pei Wang,et al.  Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity. , 2008, Optics express.

[26]  Kurt Busch,et al.  Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum , 1999 .

[27]  E. M. Dianov,et al.  Advances in Raman fibers , 2002 .

[28]  Chun-Liu Zhao,et al.  Modeling of PCF with multiple reciprocity boundary element method. , 2004, Optics express.

[29]  O. Benson,et al.  Highly efficient fluorescence sensing with hollow core photonic crystal fibers , 2007, 2008 Digest of the IEEE/LEOS Summer Topical Meetings.

[30]  Jian Xu,et al.  Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity , 2007 .

[31]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[32]  J. Jensen,et al.  Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[33]  Géraud Bouwmans,et al.  Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes. , 2007, Optics express.

[34]  Fabio Di Teodoro,et al.  1-mJ energy, 1-MW peak-power, 10-W average-power, spectrally narrow, diffraction-limited pulses from a photonic-crystal fiber amplifier. , 2005, Optics express.

[35]  J K Sahu,et al.  Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off. , 2006, Optics express.

[36]  P. Roberts,et al.  Hollow-core PCF for guidance in the mid to far infra-red. , 2005, Optics express.

[37]  Vladimir P. Minkovich,et al.  Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules , 2008 .

[38]  Ole Bang,et al.  Supercontinuum generation in photonic crystal fibres , 2007 .

[39]  T A Birks,et al.  Coupling in dual-core photonic bandgap fibers: theory and experiment. , 2007, Optics express.

[40]  Jacques Albert,et al.  Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index. , 2008, Optics express.

[41]  E. Dianov,et al.  Medium-power CW Raman fiber lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[42]  E. M. dos Santos,et al.  Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications. , 2006, Optics express.

[43]  C. Headley,et al.  Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation. , 2005, Optics letters.

[44]  J R Taylor,et al.  29 W High power CW supercontinuum source. , 2008, Optics express.

[45]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[46]  Y. Arakawa,et al.  An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots , 2005, IEEE Photonics Technology Letters.

[47]  Arismar Cerqueira S,et al.  Hybrid photonic crystal fiber. , 2006, Optics express.

[48]  Tristan Kremp,et al.  Raman fiber distributed feedback lasers. , 2011, Optics letters.

[49]  Hanne Ludvigsen,et al.  Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. , 2008, Optics express.

[50]  Christophe A. Codemard,et al.  Design, performance, and limitations of fibers for cladding-pumped Raman lasers , 2011, IEEE Winter Topicals 2011.

[51]  G. C. Lim,et al.  10-W Raman fiber lasers at 1248 nm using phosphosilicate fibers , 2003 .

[52]  T. A. Birks,et al.  Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres , 2005, Nature.

[53]  Luke R. Taylor,et al.  25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star. , 2009, Optics express.

[54]  A. Stentz,et al.  Optical properties of high-delta air silica microstructure optical fibers. , 2000, Optics letters.

[55]  E. M. dos Santos,et al.  Liquid-core, liquid-cladding photonic crystal fibers. , 2007, Optics express.

[56]  Andres,et al.  Vector description of higher-order modes in photonic crystal fibers , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[57]  Ken-ichi Ueda,et al.  589 nm Light Source Based on Raman Fiber Laser , 2004 .

[58]  Rodrigo Amezcua Correa,et al.  Novel process eases production of hollow-core fiber , 2008 .

[59]  G. Agrawal,et al.  Raman amplification in fiber optical communication systems , 2005 .

[60]  Raman Kashyap,et al.  Wavelength flattened saturated erbium amplifier using multiple side-tap Bragg gratings , 1993 .

[61]  Jean-Pol Vigneron,et al.  Photonic band gap materials in butterfly scales: A possible source of "blueprints" , 2008 .

[62]  R. McPhedran,et al.  Multipole method for microstructured optical fibers. I. Formulation , 2003 .

[63]  Iyad Dajani,et al.  18 W single-stage single-frequency acoustically tailored Raman fiber amplifier. , 2012, Optics letters.

[64]  Derek Abbott,et al.  Porous fibers: a novel approach to low loss THz waveguides. , 2008, Optics express.

[65]  H. Fragnito,et al.  Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions , 2005, Journal of Lightwave Technology.

[66]  All-fiber devices based on photonic crystal fibers with integrated electrodes , 2009 .

[67]  Bernhard Schmauss,et al.  Characterization of a narrowband Raman MOPA with short master oscillator , 2012, Other Conferences.

[68]  Raymond J Beach,et al.  High brightness, quantum-defect-limited conversion efficiency in cladding-pumped Raman fiber amplifiers and oscillators. , 2010, Optics express.

[69]  Georges Humbert,et al.  Hollow core photonic crystal fibers for beam delivery. , 2004, Optics express.

[70]  John M. Fini,et al.  Ultra‐large effective‐area, higher‐order mode fibers: a new strategy for high‐power lasers , 2008 .

[71]  S. Leon-Saval,et al.  Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre. , 2006, Optics express.

[72]  J. Limpert,et al.  Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity. , 2005, Optics express.

[73]  David J. Richardson,et al.  High power fiber lasers: current status and future perspectives [Invited] , 2010 .

[74]  David J. Richardson,et al.  Robustly single mode hollow core photonic bandgap fiber. , 2008 .

[75]  O. Medvedkov,et al.  Laser-diode-pumped phosphosilicate-fiber Raman laser with an output power of 1 W at 1.48 mum. , 1999, Optics letters.

[76]  K. Tajima,et al.  Ultra-Wideband Transmission Over Low Loss PCF , 2009, Journal of Lightwave Technology.

[77]  F Benabid,et al.  Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs , 2007, Science.

[78]  Robert Q. Fugate,et al.  Realization of a 50-watt facility-class sodium guidestar pump laser , 2005, SPIE LASE.

[79]  B. Eggleton,et al.  Application of an ARROW model for designing tunable photonic devices. , 2004, Optics express.

[80]  S. Jackson Towards high-power mid-infrared emission from a fibre laser , 2012, Nature Photonics.

[81]  Yan Feng,et al.  Multiwatts narrow linewidth fiber Raman amplifiers. , 2008, Optics express.

[82]  B. Eggleton,et al.  Experimental reconstruction of bands in solid core photonic bandgap fibres using acoustic gratings. , 2008, Optics express.

[83]  D. M. Atkin,et al.  All-silica single-mode optical fiber with photonic crystal cladding. , 1996, Optics letters.

[84]  S. V. Chernikov,et al.  Broadband high-gain dispersion compensating Raman amplifier , 2000 .

[85]  V. Fromzel,et al.  Resonantly cladding-pumped Yb-free Er-doped LMA fiber laser with record high power and efficiency. , 2011, Optics express.

[86]  E. Monberg,et al.  Characterizing the modes of a core-pumped, large-mode area Er fiber using spatially and spectrally resolved imaging , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[87]  Andrew M. Jones,et al.  Mid-IR fiber lasers based on molecular gas-filled hollow-core photonic crystal fiber , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[88]  Heike Ebendorff-Heidepriem,et al.  Bismuth glass holey fibers with high nonlinearity. , 2004, Optics express.

[89]  Arismar Cerqueira S,et al.  Highly efficient generation of broadband cascaded four-wave mixing products. , 2008, Optics express.

[90]  J. Rothhardt,et al.  Single-polarization ultra-large-mode-area Yb-doped photonic crystal fiber. , 2008, Optics express.

[91]  Poul Varming,et al.  Design of DFB fibre lasers , 1998 .

[92]  J. Limpert,et al.  Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier. , 2004, Optics express.

[93]  David J. Richardson,et al.  A tunable, femtosecond pulse source operating in the range 1.06-1.33 microns based on an Yb doped holey fiber amplifier , 2001, CLEO 2001.

[94]  Fetah Benabid,et al.  Field enhancement within an optical fibre with a subwavelength air core , 2007 .

[95]  P. Andrés,et al.  Nearly zero ultraflattened dispersion in photonic crystal fibers. , 2000, Optics letters.

[96]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[97]  C. Codemard,et al.  Analysis of Spectral Bendloss Filtering in a Cladding-Pumped W-Type Fiber Raman Amplifier , 2010, Journal of Lightwave Technology.

[98]  Ikmo Park,et al.  Terahertz pulse propagation in plastic photonic crystal fibers , 2002, IMS 2002.

[99]  M. Hirano,et al.  Silica-Based Highly Nonlinear Fibers and Their Application , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[100]  V. Supradeepa,et al.  Continuous wave Erbium-doped fiber laser with output power of >100 W at 1550 nm in-band core-pumped by a 1480nm Raman fiber laser , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[101]  Core-ring Photonic Crystal Fibers for sensing , 2008 .

[102]  J. Broeng,et al.  Highly birefringent index-guiding photonic crystal fibers , 2001, IEEE Photonics Technology Letters.

[103]  C. Cordeiro,et al.  Nonlinear interaction between two different photonic bandgaps of a hybrid photonic crystal fiber. , 2008, Optics letters.

[104]  D N Payne,et al.  Photoinduced absorption change in germanosilicate preforms: evidence for the color-center model of photosensitivity. , 1995, Applied optics.

[105]  D. Passaro,et al.  All-Silica Hollow-Core Microstructured Bragg Fibers for Biosensor Application , 2008, IEEE Sensors Journal.

[106]  J. Knight,et al.  Photonic crystal fibers and fiber lasers (Invited) , 2007 .

[107]  F. Omenetto,et al.  Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. , 2002, Optics express.

[108]  Jens Limpert,et al.  High-power photonic crystal fiber lasers: design, handling and subassemblies , 2005, SPIE LASE.

[109]  P. Roberts,et al.  Demonstration of ultra-flattened dispersion in photonic crystal fibers. , 2002, Optics express.

[110]  Masahiro Goto,et al.  Teflon Photonic Crystal Fiber as Terahertz Waveguide , 2004 .

[111]  J W Nicholson,et al.  A higher-order-mode erbium-doped-fiber amplifier. , 2010, Optics express.

[112]  M Cronin-Golomb,et al.  Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. , 2008, Optics express.

[113]  J W Nicholson,et al.  Scaling the effective area of higher-order-mode erbium-doped fiber amplifiers. , 2012, Optics express.

[114]  J W Nicholson,et al.  Raman fiber laser with 81 W output power at 1480 nm. , 2010, Optics letters.

[115]  P. Leproux,et al.  Photonic crystal fibres for lasers and amplifiers , 2006 .

[116]  William J. Wadsworth,et al.  Yb3+-doped photonic crystal fibre laser , 2000 .

[117]  Gilles Renversez,et al.  Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size. , 2005, Optics Letters.

[118]  Günter Steinmeyer,et al.  A chirped photonic-crystal fibre , 2008 .

[119]  J. Kim,et al.  Achievement of large spot size and long collimation length using UV curable self-assembled polymer lens on a beam expanding core-less silica fiber , 2004, IEEE Photonics Technology Letters.

[120]  C. Headley,et al.  High-power Cascaded Raman Fiber Laser with 41-W output power at 1480-nm band , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[121]  W. Phillips Nobel Lecture: Laser cooling and trapping of neutral atoms , 1998 .

[122]  Y. Namihira,et al.  Proposal for Highly Nonlinear Dispersion-Flattened Octagonal Photonic Crystal Fibers , 2008, IEEE Photonics Technology Letters.

[123]  J. Bouteiller,et al.  Spectral modeling of Raman fiber lasers , 2003, IEEE Photonics Technology Letters.

[124]  Daniel R. Grischkowsky,et al.  Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers , 2000 .

[125]  S. A. Cerqueira,et al.  PCFDT: An accurate and friendly photonic crystal fiber design tool , 2008 .

[126]  N. S. Bergano,et al.  100 Gb/s (10/spl times/10 Gb/s) WDM transmission over 7200 km using distributed Raman amplification , 1997 .

[127]  J. T. Green,et al.  Continuous-wave high-power rotational Raman generation in molecular deuterium. , 2009, Optics letters.

[128]  K. Inoue,et al.  Arrangement of fiber pieces for a wide wavelength conversion range by fiber four-wave mixing. , 1994, Optics letters.

[129]  R. Kashyap Fiber Bragg Gratings , 1999 .

[130]  Leon Poladian,et al.  Vector wave expansion method for leaky modes of microstructured optical fibers , 2003 .

[131]  P. Russell,et al.  Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres. , 2004, Optics express.

[132]  D. Bonaccini Calia,et al.  Multi-watt 589-nm Na D2-line generation via frequency doubling of a Raman fiber amplifier: a source for LGS-assisted AO , 2006, SPIE Astronomical Telescopes + Instrumentation.

[133]  Jonathan Knight,et al.  Large mode area photonic crystal fibre , 1998 .

[135]  F. Benabid,et al.  Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber , 2002, Science.

[136]  Masanori Koshiba,et al.  Full-Vector Analysis of Photonic Crystal Fibers Using the Finite Element Method , 2002 .

[137]  J. Ania-Castañón,et al.  High efficiency supercontinuum generation using ultra-long Raman fibre cavities , 2008 .

[138]  N. Peyghambarian,et al.  Ultracompact cladding-pumped 35-mm-short fiber laser with 4.7-W single-mode output power , 2006 .

[139]  F Benabid,et al.  Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber. , 2007, Physical review letters.

[140]  C. A. Jack,et al.  Analysis and evaluation of graded-index fiber lenses , 1987 .

[141]  Vladimir Karpov,et al.  Diode-seeded fiber-based sodium laser guide stars ready for deployment , 2010, Astronomical Telescopes + Instrumentation.

[142]  J A Harrington,et al.  High-peak-power, pulsed CO(2) laser light delivery by hollow glass waveguides. , 1997, Applied optics.

[143]  Boris Kuhlmey,et al.  Metallic mode confinement in microstructured fibres. , 2008, Optics express.

[144]  Neil G. R. Broderick,et al.  Improved design of a DFB Raman fibre laser , 2009 .

[145]  Yan Feng,et al.  Stimulated-Brillouin-scattering-suppressed high-power single-frequency polarization-maintaining Raman fiber amplifier with longitudinally varied strain for laser guide star. , 2012, Optics letters.

[146]  T. Taru,et al.  Temperature response of photonic bandgap fibers based on high-index inclusions , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[147]  T A Birks,et al.  Highly birefringent photonic crystal fibers. , 2000, Optics letters.

[148]  H. Fabian,et al.  Analysis of OH absorption bands in synthetic silica , 1996 .

[149]  Wei Jin,et al.  Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs. , 2007, Optics express.

[150]  S. Nolte,et al.  High-power air-clad large-mode-area photonic crystal fiber laser , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[151]  Roger,et al.  Spectroscopy of Rocks and Minerals , and Principles of Spectroscopy , 2002 .

[152]  Fetah Benabid,et al.  Square-lattice large-pitch hollow-core photonic crystal fiber , 2008 .

[153]  Alireza Hassani,et al.  Photonic bandgap fiber-based Surface Plasmon Resonance sensors. , 2007, Optics express.

[154]  C. Headley,et al.  Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers , 2003 .

[155]  D N Payne,et al.  Er(3+):Yb(3+)-codoped fiber distributed-feedback laser. , 1994, Optics letters.

[156]  Paul Steinvurzel,et al.  Six wavelength Raman fiber laser for C + L-band Raman amplification , 2002, CLEO 2002.

[157]  Morten Ibsen,et al.  Highly efficient Raman distributed feedback fibre lasers. , 2012, Optics express.

[158]  Ping Shum,et al.  Low-loss air-core polarization maintaining terahertz fiber. , 2008, Optics express.

[159]  S. Kawanishi,et al.  Photoluminescence of semiconductor nanocrystal quantum dots at 1550 nm wavelength in the core of photonic bandgap fiber , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[160]  P. Russell Photonic Crystal Fibers , 2003, Science.

[161]  C. Headley,et al.  Diffraction-Limited Fundamental Mode Operation of Core-Pumped Very-Large-Mode-Area Er Fiber Amplifiers , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[162]  W. A. Reed,et al.  High-Power 1.48 µm Cascaded Raman Laser in Germanosilicate Fibers , 1995 .

[163]  Tinko A. Eftimov,et al.  A photonic crystal fiber sensor for pressure measurements , 2006, IEEE Transactions on Instrumentation and Measurement.

[164]  Abraham Katzir,et al.  Single-mode octagonal photonic crystal fibers for the middle infrared , 2008 .

[165]  N. Ageorges,et al.  Laser guide star adaptive optics for astronomy , 2000 .

[166]  Timothy A. Birks,et al.  Localized function method for modeling defect modes in 2-D photonic crystals , 1999 .

[167]  F. Omenetto,et al.  Spectrally smooth supercontinuum from 350 nm to 3 mum in sub-centimeter lengths of soft-glass photonic crystal fibers. , 2006, Optics express.

[168]  David J. Webb,et al.  Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors , 2008 .

[169]  S. Radic,et al.  Dual-order Raman pump , 2003, IEEE Photonics Technology Letters.

[170]  Jörg Neumann,et al.  Er-doped photonic crystal fiber amplifier with 70 W of output power. , 2011, Optics letters.

[171]  A. Ruehl,et al.  Normal dispersion erbium-doped fiber laser with pulse energies above 10 nJ. , 2008, Optics express.

[172]  The physics of light transmission through subwavelength apertures and aperture arrays , 2009 .

[173]  R. Wu,et al.  High-power cascaded Raman fibre laser using phosphosilicate fibre , 2004 .

[174]  J. Love,et al.  A fractal-based fibre for ultra-high throughput optical probes. , 2007, Optics express.

[175]  Fabio Di Teodoro,et al.  Multistage Yb-doped fiber amplifier generating megawatt peak-power, subnanosecond pulses. , 2005, Optics letters.

[176]  J. Folkenberg,et al.  Broadband single-polarization photonic crystal fiber. , 2005, Optics letters.

[177]  Siddharth Ramachandran,et al.  Natural bend-distortion immunity of higher-order-mode large-mode-area fibers. , 2007, Optics letters.

[178]  R. Horley,et al.  Erbium:Ytterbium Codoped Large-Core Fiber Laser With 297-W Continuous-Wave Output Power , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[179]  Alexander Argyros,et al.  Transmission of terahertz radiation using a microstructured polymer optical fiber. , 2008, Optics letters.

[180]  Florian Jansen,et al.  Long period gratings written in large-mode area photonic crystal fiber , 2008 .

[181]  J. Rothhardt,et al.  Extended single-mode photonic crystal fiber lasers. , 2006, Optics express.

[182]  J.J. DeMarco,et al.  Capacity upgrades of transmission systems by Raman amplification , 1996, IEEE Photonics Technology Letters.

[183]  Jun Li,et al.  All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers. , 2004, Optics express.

[184]  Sergey A. Babin,et al.  Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser , 2007 .

[185]  Robert J. Mears,et al.  Ultra-broadband high performance distributed Raman amplifier employing pump modulation , 2002, Optical Fiber Communication Conference and Exhibit.

[186]  Ishwar D. Aggarwal,et al.  Applications of chalcogenide glass optical fibers , 2002 .

[187]  Stuart D. Jackson,et al.  Theory and numerical simulation of nth-order cascaded Raman fiber lasers , 2001 .

[188]  M Douay,et al.  Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm. , 2005, Optics express.

[189]  M. Islam Raman amplifiers for telecommunications , 2002 .

[190]  H. Winful,et al.  Distributed feedback fiber Raman laser , 2001, CLEO 2001.

[191]  Lars Gruner-Nielsen,et al.  Raman amplification for loss compensation in dispersion compensating fibre modules , 1998 .

[192]  P. Russell,et al.  Scaling laws and vector effects in bandgap-guiding fibres. , 2004, Optics express.

[193]  B. Eggleton,et al.  Microstructured optical fiber devices. , 2001, Optics express.

[194]  C. Cordeiro,et al.  Photonic bandgap with an index step of one percent. , 2005, Optics express.

[195]  K. Rottwitt,et al.  Pump interactions in a 100-nm bandwidth Raman amplifier , 1999, IEEE Photonics Technology Letters.

[196]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[197]  J. Shephard,et al.  Single-mode mid-IR guidance in a hollow-core photonic crystal fiber. , 2005, Optics express.

[198]  J. R. Taylor,et al.  Supercontinuum Generation in Optical Fibers: Preface , 2010 .

[199]  J R Taylor,et al.  Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589nm. , 2005, Optics express.

[200]  A. K. Mairaj,et al.  Towards high-index glass based monomode holey fibre with large mode area , 2004 .

[201]  J R Taylor,et al.  Optical pulse compression in dispersion decreasing photonic crystal fiber. , 2007, Optics express.

[202]  Ole Bang,et al.  Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers. , 2007, Optics express.

[203]  R. Dąbrowski,et al.  Photonic liquid crystal fibers — a new challenge for fiber optics and liquid crystals photonics , 2006 .

[204]  Shingo Kawai,et al.  75-nm 3-dB gain-band optical amplification with erbium-doped fluoride fibre amplifiers and distributed Raman amplifiers in 9 × 2.5-Gb/s WDM transmission experiment , 1997 .

[205]  D. Richardson,et al.  Optimizing the pumping configuration for the power scaling of in-band pumped erbium doped fiber amplifiers. , 2012, Optics express.

[206]  F Benabid,et al.  Large-pitch kagome-structured hollow-core photonic crystal fiber. , 2006, Optics letters.

[207]  Evgeny Vanin,et al.  Polarization dependence of Raman gain on propagation direction of pump and probe signal in optical fibers , 2001, CLEO 2001.

[208]  Simon Fleming,et al.  Microstructured polymer optical fibre. , 2001 .

[209]  Junhua Ji,et al.  Cladding-pumped Raman fibre laser sources , 2011 .

[210]  Daniel M. Mittleman,et al.  Metal wires for terahertz wave guiding , 2004, Nature.

[211]  B. Eggleton,et al.  Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber. , 2002, Optics express.

[212]  Markus A. Schmidt,et al.  Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires , 2007, 0711.4553.

[213]  John E. Sipe,et al.  Long-period fiber gratings as band-rejection filters , 1995 .

[214]  David J Richardson,et al.  High-energy, in-band pumped erbium doped fiber amplifiers. , 2012, Optics express.

[215]  P. Roberts,et al.  Ultimate low loss of hollow-core photonic crystal fibres. , 2005, Optics express.

[216]  P. Winzer,et al.  Time-division multiplexed Raman pump experiment using a tunable C-band laser , 2002, IEEE Photonics Technology Letters.

[217]  Shin-Tson Wu,et al.  Electrically tunable liquid-crystal photonic crystal fiber , 2004 .

[218]  J. Jasapara,et al.  Comparison of amplification in large area fibers using cladding-pump and fundamental-mode core-pump schemes. , 2009, Optics Express.

[219]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[220]  N. Mortensen,et al.  Air-clad fibers: pump absorption assisted by chaotic wave dynamics? , 2007, Optics express.

[221]  Ken-ichi Ueda,et al.  Single-frequency ytterbium doped photonic bandgap fiber amplifier at 1178 nm. , 2012, Optics express.

[222]  J. Sanghera,et al.  Small-core As-Se fiber for Raman amplification. , 2003, Optics letters.

[223]  R. Engelbrecht,et al.  Numerical calculation of stimulated Brillouin scattering and its suppression in Raman fiber amplifiers , 2003, 2003 Conference on Lasers and Electro-Optics Europe (CLEO/Europe 2003) (IEEE Cat. No.03TH8666).

[224]  Clint Zeringue,et al.  Theoretical analysis of single-frequency Raman fiber amplifier system operating at 1178 nm. , 2010, Optics express.

[225]  Jurgen Michel,et al.  Hybrid waveguides for optically pumped amplifiers , 2009 .

[226]  Tanya M. Monro,et al.  PROGRESS IN MICROSTRUCTURED OPTICAL FIBERS , 2006 .

[227]  I. Cristiani,et al.  Numerical modeling and optimization of cascaded CW Raman fiber lasers , 2000, IEEE Journal of Quantum Electronics.

[228]  Byeong Ha Lee,et al.  Lensed photonic crystal fiber obtained by use of an arc discharge. , 2006, Optics letters.

[229]  Iyad Dajani,et al.  Acoustically segmented photonic crystal fiber for single-frequency high-power laser applications. , 2011, Optics letters.

[230]  F Benabid,et al.  High power 55 watts CW Raman fiber-gas-laser , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[231]  S. Namiki,et al.  Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes , 2001 .

[232]  Philippe Roy,et al.  High-power photonic-bandgap fiber laser. , 2008, Optics letters.

[233]  S. A. Cerqueira,et al.  Highly Birefringent Hybrid Photonic Crystal Fiber , 2009 .

[234]  V. Fromzel,et al.  Resonantly (in-band) cladding-pumped Yb-free Er-doped fibre laser with record efficiency , 2012 .

[235]  M. Soljačić,et al.  Efficient mid-IR spectral generation via spontaneous fifth-order cascaded-Raman amplification in silica fibers. , 2008, Optics Letters.

[236]  Jes Broeng,et al.  Air-clad photonic crystal fibers for high-power single-mode lasers , 2004, SPIE LASE.

[237]  N. Mortensen,et al.  Polarization maintaining large mode area photonic crystal fiber. , 2004, Optics express.

[238]  C. D. de Matos,et al.  Random fiber laser. , 2007, Physical review letters.

[239]  D. Lupo,et al.  Nonlinear fiber optics. By G. P. Agrawal. Academic Press, San Diego 1989, xii, 342 pp, bound, US $39.95.—ISBN 0‐12‐045140‐9 , 1990 .

[240]  Zhaoming Zhu,et al.  Full-vectorial finite-difference analysis of microstructured optical fibers. , 2002, Optics express.

[241]  Byeong Ha Lee,et al.  Single-body lensed photonic crystal fibers as side-viewing probes for optical imaging systems. , 2008, Optics letters.