Mesh Repair with Topology Control

In this research report, we propose a new method to convert a triangular mesh with geometrical and topological defects into a 2-manifold, whose topology (genus and number of connected components) is controlled by the user. We start by converting the input mesh into a thin layer of face-connected voxels; then the topology of this voxel set can be modified by the user thanks to morphological operators of different orders; at last the fixed voxel set is converted back into a triangular mesh, which both is a 2-manifold and have the desired topology.

[1]  Carlos Andújar,et al.  Topology-reducing surface simplification using a discrete solid representation , 2002, TOGS.

[2]  Christian Rössl,et al.  Geometric modeling based on triangle meshes , 2006, SIGGRAPH Courses.

[3]  Gregory M. Nielson,et al.  On Marching Cubes , 2003, IEEE Trans. Vis. Comput. Graph..

[4]  Marc Alexa,et al.  Context-based surface completion , 2004, ACM Trans. Graph..

[5]  Jarek Rossignac,et al.  Optimizing the topological and combinatorial complexity of isosurfaces , 2005, Comput. Aided Des..

[6]  Jihad El-Sana,et al.  Topology Simplification for Polygonal Virtual Environments , 1998, IEEE Trans. Vis. Comput. Graph..

[7]  Raphaëlle Chaine A geometric convection approach of 3-D reconstruction , 2003 .

[8]  Leif Kobbelt,et al.  Structure Preserving CAD Model Repair , 2005, Comput. Graph. Forum.

[9]  Steve Marschner,et al.  Filling holes in complex surfaces using volumetric diffusion , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.

[10]  Michael M. Kazhdan,et al.  Poisson surface reconstruction , 2006, SGP '06.

[11]  Bing-Yu Chen,et al.  Cubical Marching Squares: Adaptive Feature Preserving Surface Extraction from Volume Data , 2005, Comput. Graph. Forum.

[12]  Szymon Rusinkiewicz,et al.  Eurographics Symposium on Geometry Processing (2005) Atomic Volumes for Mesh Completion , 2022 .

[13]  Daniel Cohen-Or,et al.  Bilateral mesh denoising , 2003 .

[14]  Thomas Lewiner,et al.  Efficient Implementation of Marching Cubes' Cases with Topological Guarantees , 2003, J. Graphics, GPU, & Game Tools.

[15]  Guillermo Sapiro,et al.  Inpainting surface holes , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[16]  Zoë J. Wood,et al.  Topological Noise Removal , 2001, Graphics Interface.

[17]  Gil Shklarski,et al.  Interactive topology-aware surface reconstruction , 2007, ACM Trans. Graph..

[18]  Shi-Min Hu,et al.  Topology Repair of Solid Models Using Skeletons , 2007, IEEE Transactions on Visualization and Computer Graphics.

[19]  Greg Turk,et al.  Simplification and Repair of Polygonal Models Using Volumetric Techniques , 2003, IEEE Trans. Vis. Comput. Graph..

[20]  Sunghee Choi,et al.  The power crust , 2001, SMA '01.

[21]  Tamal K. Dey,et al.  Curve and Surface Reconstruction , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[22]  Marcin Novotni,et al.  Progressive Gap Closing for MeshRepairing , 2002 .

[23]  Tao Ju,et al.  Robust repair of polygonal models , 2004, ACM Trans. Graph..

[24]  Shi-Min Hu,et al.  Editing the topology of 3D models by sketching , 2007, ACM Trans. Graph..

[25]  Peter Liepa,et al.  Filling Holes in Meshes , 2003, Symposium on Geometry Processing.

[26]  Mathieu Desbrun,et al.  Removing excess topology from isosurfaces , 2004, TOGS.

[27]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[28]  T. M. Murali,et al.  Consistent solid and boundary representations from arbitrary polygonal data , 1997, SI3D.

[29]  Rae A. Earnshaw,et al.  Advances in Modelling, Animation and Rendering , 2002, Springer London.

[30]  Sunghee Choi,et al.  The power crust, unions of balls, and the medial axis transform , 2001, Comput. Geom..

[31]  Leif Kobbelt,et al.  Automatic restoration of polygon models , 2005, TOGS.

[32]  Leif Kobbelt,et al.  Isosurface reconstruction with topology control , 2002, 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings..

[33]  Tamal K. Dey,et al.  Computing homology groups of simplicial complexes in R3 , 1998, JACM.

[34]  Gabriel Taubin,et al.  Cutting and Stitching: Converting Sets of Polygons to Manifold Surfaces , 2001, IEEE Trans. Vis. Comput. Graph..