Enhancing D-bar reconstructions for electrical impedance tomography with conformal maps

We present a few ways of using conformal maps in the reconstruction of two-dimensional conductivities in electrical impedance tomography. First, by utilizing the Riemann mapping theorem, we can transform any simply connected domain of interest to the unit disk where the D-bar method can be implemented most efficiently. In particular, this applies to the open upper half-plane. Second, in the unit disk we may choose a region of interest that is magnified using a suitable Mobius transform. To facilitate the efficient use of conformal maps, we introduce input current patterns that are named conformally transformed truncated Fourier basis; in practice, their use corresponds to positioning the available electrodes close to the region of interest. These ideas are numerically tested using simulated continuum data in bounded domains and simulated point electrode data in the half-plane. The connections to practical electrode measurements are also discussed.

[1]  Nuutti Hyvönen,et al.  Complete Electrode Model of Electrical Impedance Tomography: Approximation Properties and Characterization of Inclusions , 2004, SIAM J. Appl. Math..

[2]  Alexander Kurganov,et al.  The Order of Accuracy of Quadrature Formulae for Periodic Functions , 2009 .

[3]  H. Hakula,et al.  Sweep data of electrical impedance tomography , 2011 .

[4]  Mark J. Ablowitz,et al.  Multidimensional nonlinear evolution equations and inverse scattering , 1986 .

[5]  Nuutti Hyvönen,et al.  Convex Source Support and Its Application to Electric Impedance Tomography , 2008, SIAM J. Imaging Sci..

[6]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .

[7]  E. Somersalo,et al.  Existence and uniqueness for electrode models for electric current computed tomography , 1992 .

[8]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[9]  G. Vainikko Fast Solvers of the Lippmann-Schwinger Equation , 2000 .

[10]  A. Nachman,et al.  Reconstructions from boundary measurements , 1988 .

[11]  Liliana Borcea,et al.  Addendum to 'Electrical impedance tomography' , 2003 .

[12]  S. Siltanen,et al.  D-BAR METHOD AND EXCEPTIONAL POINTS AT POSITIVE ENERGY : A COMPUTATIONAL STUDY , 2014 .

[13]  David Isaacson,et al.  Reconstructions of chest phantoms by the D-bar method for electrical impedance tomography , 2004, IEEE Transactions on Medical Imaging.

[14]  Samuli Siltanen,et al.  The D-Bar Method for Diffuse Optical Tomography: A Computational Study , 2016, Exp. Math..

[15]  Bastian Harrach,et al.  JUSTIFICATION OF POINT ELECTRODE MODELS IN ELECTRICAL IMPEDANCE TOMOGRAPHY , 2011 .

[16]  David Isaacson,et al.  A direct reconstruction algorithm for electrical impedance tomography , 2002, IEEE Transactions on Medical Imaging.

[17]  N. Hyvönen,et al.  Convex source support in half-plane , 2010 .

[18]  C. Pommerenke Boundary Behaviour of Conformal Maps , 1992 .

[19]  Gunther Uhlmann,et al.  Electrical impedance tomography and Calderón's problem , 2009 .

[20]  J C Newell,et al.  Imaging cardiac activity by the D-bar method for electrical impedance tomography , 2006, Physiological measurement.

[21]  J. Leon,et al.  On a spectral transform of a KDV-like equation related to the Schrodinger operator in the plane , 1987 .

[22]  Andreas Rieder,et al.  Resolution-Controlled Conductivity Discretization in Electrical Impedance Tomography , 2014, SIAM J. Imaging Sci..

[23]  Gennadi Vainikko,et al.  Periodic Integral and Pseudodifferential Equations with Numerical Approximation , 2001 .

[24]  Tat Soon Yeo,et al.  Full-wave computed tomography. Part 2: Resolution limits , 1984 .

[25]  Otto Seiskari,et al.  Point Electrode Problems in Piecewise Smooth Plane Domains , 2012, SIAM J. Math. Anal..

[26]  David Isaacson,et al.  Electrical Impedance Tomography , 2002, IEEE Trans. Medical Imaging.

[27]  Matti Lassas,et al.  Reconstructions of piecewise constant conductivities by the D-bar method for electrical impedance tomography , 2008 .

[28]  Matti Lassas,et al.  REGULARIZED D-BAR METHOD FOR THE INVERSE CONDUCTIVITY PROBLEM , 2009 .

[29]  David Isaacson,et al.  An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .

[30]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[31]  D. Isaacson Distinguishability of Conductivities by Electric Current Computed Tomography , 1986, IEEE Transactions on Medical Imaging.

[32]  D. Isaacson,et al.  An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .

[33]  D. Isaacson,et al.  Electrode models for electric current computed tomography , 1989, IEEE Transactions on Biomedical Engineering.

[34]  Nuutti Hyvönen,et al.  Approximating idealized boundary data of electric impedance tomography by electrode measurements , 2009 .

[35]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[36]  Samuli Siltanen,et al.  Numerical solution method for the dbar-equation in the plane , 2004 .

[37]  Kim Knudsen,et al.  Distinguishability Revisited: Depth Dependent Bounds on Reconstruction Quality in Electrical Impedance Tomography , 2016, SIAM J. Appl. Math..

[38]  M. Cheney,et al.  Distinguishability in impedance imaging , 1992, IEEE Transactions on Biomedical Engineering.

[39]  R. Novikov,et al.  Multidimensional inverse spectral problem for the equation —Δψ + (v(x) — Eu(x))ψ = 0 , 1988 .

[40]  Tobin A. Driscoll,et al.  Algorithm 756: a MATLAB toolbox for Schwarz-Christoffel mapping , 1996, TOMS.

[41]  S. Siltanen,et al.  Reconstructing conductivities with boundary corrected D-bar method , 2011, 1109.5982.

[42]  R. Coifman,et al.  Scattering, transformations spectrales et équations d'évolution non linéaire II , 1981 .

[43]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[44]  Lloyd N. Trefethen,et al.  Schwarz-Christoffel Mapping , 2002 .

[45]  Helle Majander,et al.  Compensation for geometric modeling errors by positioning of electrodes in electrical impedance tomography , 2016, 1605.07823.

[46]  Gunther Uhlmann,et al.  Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions , 1997 .

[47]  Matti Lassas,et al.  D-Bar Method for Electrical Impedance Tomography with Discontinuous Conductivities , 2007, SIAM J. Appl. Math..

[48]  L. D. Faddeev Increasing Solutions of the Schroedinger Equation , 1966 .