Voting rules as error-correcting codes

We present the first model of optimal voting under adversarial noise. From this viewpoint, voting rules are seen as error-correcting codes: their goal is to correct errors in the input rankings and recover a ranking that is close to the ground truth. We derive worst-case bounds on the relation between the average accuracy of the input votes, and the accuracy of the output ranking. Empirical results from real data show that our approach produces significantly more accurate rankings than alternative approaches.

[1]  Venkatesan Guruswami,et al.  List Decoding of Error-Correcting Codes (Winning Thesis of the 2002 ACM Doctoral Dissertation Competition) , 2005, Lecture Notes in Computer Science.

[2]  Craig Boutilier,et al.  Robust Approximation and Incremental Elicitation in Voting Protocols , 2011, IJCAI.

[3]  Bernhard Haeupler,et al.  Interactive Channel Capacity Revisited , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[4]  Piotr Faliszewski,et al.  Good Rationalizations of Voting Rules , 2010, AAAI.

[5]  Vincent Conitzer,et al.  Communication complexity of common voting rules , 2005, EC '05.

[6]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[7]  Venkatesan Guruswami,et al.  List decoding of error correcting codes , 2001 .

[8]  Hannu Nurmi,et al.  Closeness Counts in Social Choice , 2008 .

[9]  M. Trick,et al.  Voting schemes for which it can be difficult to tell who won the election , 1989 .

[10]  Christian Komusiewicz,et al.  Average parameterization and partial kernelization for computing medians , 2010, J. Comput. Syst. Sci..

[11]  David C. Parkes,et al.  Preference Elicitation For General Random Utility Models , 2013, UAI.

[12]  R. Graham,et al.  Spearman's Footrule as a Measure of Disarray , 1977 .

[13]  David C. Parkes,et al.  Computing Parametric Ranking Models via Rank-Breaking , 2014, ICML.

[14]  Ariel D. Procaccia,et al.  A Maximum Likelihood Approach For Selecting Sets of Alternatives , 2012, UAI.

[15]  Vincent Conitzer,et al.  Anonymity-Proof Voting Rules , 2008, WINE.

[16]  Vincent Conitzer,et al.  A Maximum Likelihood Approach towards Aggregating Partial Orders , 2011, IJCAI.

[17]  Vincent Conitzer,et al.  Aggregating preferences in multi-issue domains by using maximum likelihood estimators , 2010, AAMAS.

[18]  C. L. Mallows NON-NULL RANKING MODELS. I , 1957 .

[19]  K. Arrow,et al.  Social Choice and Individual Values , 1951 .

[20]  Minjae Lee,et al.  RNA design rules from a massive open laboratory , 2014, Proceedings of the National Academy of Sciences.

[21]  David C. Parkes,et al.  Random Utility Theory for Social Choice , 2012, NIPS.

[22]  Ariel D. Procaccia,et al.  On the robustness of preference aggregation in noisy environments , 2007, AAMAS '07.

[23]  Arya Mazumdar,et al.  Codes in Permutations and Error Correction for Rank Modulation , 2009, IEEE Transactions on Information Theory.

[24]  Avrim Blum,et al.  On-line Algorithms in Machine Learning , 1996, Online Algorithms.

[25]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[26]  Allan Borodin,et al.  Online computation and competitive analysis , 1998 .

[27]  Craig Boutilier,et al.  Optimal social choice functions: A utilitarian view , 2015, Artif. Intell..

[28]  H. Young Condorcet's Theory of Voting , 1988, American Political Science Review.

[29]  R. Schapire,et al.  Toward Efficient Agnostic Learning , 1994 .

[30]  Rolf Niedermeier,et al.  Theoretical and empirical evaluation of data reduction for exact Kemeny Rank Aggregation , 2014, Autonomous Agents and Multi-Agent Systems.

[31]  Ariel D. Procaccia,et al.  Modal Ranking: A Uniquely Robust Voting Rule , 2014, AAAI.

[32]  Ariel D. Procaccia Can Approximation Circumvent Gibbard-Satterthwaite? , 2010, AAAI.

[33]  Ariel D. Procaccia,et al.  Better Human Computation Through Principled Voting , 2013, AAAI.

[34]  G. B. M.,et al.  Diophantus of Alexandria: a Study in the History of Greek Algebra , 1911, Nature.

[35]  Ariel D. Procaccia,et al.  When do noisy votes reveal the truth? , 2013, EC '13.

[36]  Sir Thomas L. Heath,et al.  Diophantos of Alexandria: A Study in the History of Greek Algebra , 1964 .