Characterizing pathogenic processes in Batten disease: use of small eukaryotic model systems.

[1]  A. Lehesjoki,et al.  Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis. , 2006, Brain : a journal of neurology.

[2]  D. Pearce,et al.  Saccharomyces cerevisiae Lacking Btn1p Modulate Vacuolar ATPase Activity to Regulate pH Imbalance in the Vacuole* , 2006, Journal of Biological Chemistry.

[3]  M. MacDonald,et al.  Palmitoyl-Protein Thioesterase 1 Deficiency in Drosophila melanogaster Causes Accumulation of Abnormal Storage Material and Reduced Life Span , 2006, Genetics.

[4]  D. Ausiello,et al.  V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway , 2006, Nature Cell Biology.

[5]  D. Pearce,et al.  Defective lysosomal arginine transport in juvenile Batten disease. , 2005, Human molecular genetics.

[6]  P. Taschner,et al.  Deletion of the Caenorhabditis elegans homologues of the CLN3 gene, involved in human juvenile neuronal ceroid lipofuscinosis, causes a mild progeric phenotype , 2005, Journal of Inherited Metabolic Disease.

[7]  Sandra Codlin,et al.  btn1, the Schizosaccharomyces pombe homologue of the human Batten disease gene CLN3, regulates vacuole homeostasis , 2005, Journal of Cell Science.

[8]  Xinran Liu,et al.  Progressively reduced synaptic vesicle pool size in cultured neurons derived from neuronal ceroid lipofuscinosis-1 knockout mice , 2005, Neurobiology of Disease.

[9]  J. Cooper,et al.  Glial activation spreads from specific cerebral foci and precedes neurodegeneration in presymptomatic ovine neuronal ceroid lipofuscinosis (CLN6) , 2005, Neurobiology of Disease.

[10]  A. Kania,et al.  Aberrant lysosomal carbohydrate storage accompanies endocytic defects and neurodegeneration in Drosophila benchwarmer , 2005, The Journal of cell biology.

[11]  H. Goebel,et al.  Correlations between genotype, ultrastructural morphology and clinical phenotype in the neuronal ceroid lipofuscinoses , 2005, Neurogenetics.

[12]  G. Rubin,et al.  Cathepsin D-deficient Drosophila recapitulate the key features of neuronal ceroid lipofuscinoses , 2005, Neurobiology of Disease.

[13]  S. Mole,et al.  Identification and characterization of Caenorhabditis elegans palmitoyl protein thioesterase1 , 2005, Journal of neuroscience research.

[14]  D. Pearce,et al.  CLN3, the protein associated with batten disease: Structure, function and localization , 2005, Journal of neuroscience research.

[15]  Yoojin M Kim,et al.  Interaction among Btn1p, Btn2p, and Ist2p Reveals Potential Interplay among the Vacuole, Amino Acid Levels, and Ion Homeostasis in the Yeast Saccharomyces cerevisiae , 2005, Eukaryotic Cell.

[16]  M. MacDonald,et al.  Membrane trafficking and mitochondrial abnormalities precede subunit c deposition in a cerebellar cell model of juvenile neuronal ceroid lipofuscinosis , 2004, BMC Neuroscience.

[17]  O. Bossinger,et al.  The C. elegans ezrin-radixin-moesin protein ERM-1 is necessary for apical junction remodelling and tubulogenesis in the intestine. , 2004, Developmental biology.

[18]  M. Futai,et al.  Diverse and essential roles of mammalian vacuolar-type proton pump ATPase: toward the physiological understanding of inside acidic compartments. , 2004, Biochimica et biophysica acta.

[19]  Anthony H. Futerman,et al.  The cell biology of lysosomal storage disorders , 2004, Nature Reviews Molecular Cell Biology.

[20]  S. Hofmann,et al.  pdf1, a Palmitoyl Protein Thioesterase 1 Ortholog in Schizosaccharomyces pombe: a Yeast Model of Infantile Batten Disease , 2004, Eukaryotic Cell.

[21]  Jennifer K Inlow,et al.  Molecular and comparative genetics of mental retardation. , 2004, Genetics.

[22]  K. Takegawa,et al.  Characterization of Schizosaccharomyces pombe mutants defective in vacuolar acidification and protein sorting , 2004, Molecular Genetics and Genomics.

[23]  J. Cooper,et al.  Selectivity and Types of Cell Death in the Neuronal Ceroid Lipofuscinoses (NCLs) , 2004, Brain pathology.

[24]  J. Luzio,et al.  Two motifs target Batten disease protein CLN3 to lysosomes in transfected nonneuronal and neuronal cells. , 2003, Molecular biology of the cell.

[25]  Viviane Poupon,et al.  Mammalian late vacuole protein sorting orthologues participate in early endosomal fusion and interact with the cytoskeleton. , 2003, Molecular biology of the cell.

[26]  Yoojin M Kim,et al.  A role in vacuolar arginine transport for yeast Btn1p and for human CLN3, the protein defective in Batten disease , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Cooper,et al.  Enhanced expression of manganese-dependent superoxide dismutase in human and sheep CLN6 tissues. , 2003, The Biochemical journal.

[28]  Takashi Ueno,et al.  Characterization of Cln3p, the gene product responsible for juvenile neuronal ceroid lipofuscinosis, as a lysosomal integral membrane glycoprotein , 2003, Journal of neurochemistry.

[29]  M. MacDonald,et al.  An over-expression system for characterizing Ppt1 function in Drosophila , 2003, BMC Neuroscience.

[30]  R. Durbin,et al.  The Genome Sequence of Caenorhabditis briggsae: A Platform for Comparative Genomics , 2003, PLoS biology.

[31]  E. O’Shea,et al.  Global analysis of protein expression in yeast , 2003, Nature.

[32]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[33]  Nektarios Tavernarakis,et al.  Calcium-dependent and aspartyl proteases in neurodegeneration and ageing in C. elegans , 2003, Ageing Research Reviews.

[34]  J. McGhee,et al.  The evolutionary duplication and probable demise of an endodermal GATA factor in Caenorhabditis elegans. , 2003, Genetics.

[35]  M. Futai,et al.  Lysosome and lysosome-related organelles responsible for specialized functions in higher organisms, with special emphasis on vacuolar-type proton ATPase. , 2003, Cell structure and function.

[36]  W. Weiner,et al.  From fruit fly to bedside: translating lessons from Drosophila models of neurodegenerative disease , 2003, Current opinion in neurology.

[37]  R. Glaser,et al.  Characterization of Drosophila palmitoyl-protein thioesterase 1. , 2003, Gene.

[38]  D. Pearce,et al.  The yeast model for Batten disease: a role for Btn2p in the trafficking of the Golgi-associated vesicular targeting protein, Yif1p. , 2003, Biochemical and biophysical research communications.

[39]  I. Mellman,et al.  Activation of Lysosomal Function During Dendritic Cell Maturation , 2003, Science.

[40]  Thomas Blumenthal,et al.  Caenorhabditis elegans operons: form and function , 2003, Nature Reviews Genetics.

[41]  Thomas Blumenthal,et al.  Coexpression of neighboring genes in Caenorhabditis elegans is mostly due to operons and duplicate genes. , 2003, Genome research.

[42]  Monica Driscoll,et al.  Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans , 2002, Nature.

[43]  G. Davis,et al.  Unrestricted Synaptic Growth in spinster—a Late Endosomal Protein Implicated in TGF-β-Mediated Synaptic Growth Regulation , 2002, Neuron.

[44]  D. Pearce,et al.  Interaction with Btn2p Is Required for Localization of Rsg1p: Btn2p-Mediated Changes in Arginine Uptake in Saccharomyces cerevisiae , 2002, Eukaryotic Cell.

[45]  Ronald W. Davis,et al.  Functional profiling of the Saccharomyces cerevisiae genome , 2002, Nature.

[46]  Masumi Ito,et al.  An autoantibody inhibitory to glutamic acid decarboxylase in the neurodegenerative disorder Batten disease. , 2002, Human molecular genetics.

[47]  Erik M. Jorgensen,et al.  The art and design of genetic screens: Caenorhabditis elegans , 2002, Nature Reviews Genetics.

[48]  S. Walkley,et al.  Mitochondrial dysfunction in the neuronal ceroid-lipofuscinoses (Batten disease) , 2002, Neurochemistry International.

[49]  T. Casoli,et al.  Morphometric investigations of the mitochondrial damage in ceroid lipopigment accumulation due to vitamin E deficiency. , 2002, Archives of gerontology and geriatrics.

[50]  Miratul M. K. Muqit,et al.  Modelling neurodegenerative diseases in Drosophila: a fruitful approach? , 2002, Nature Reviews Neuroscience.

[51]  T. Nishi,et al.  The vacuolar (H+)-ATPases — nature's most versatile proton pumps , 2002, Nature Reviews Molecular Cell Biology.

[52]  Gary D Bader,et al.  Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants , 2001, Science.

[53]  P. Kinnunen,et al.  Elevated lysosomal pH in neuronal ceroid lipofuscinoses (NCLs). , 2001, European journal of biochemistry.

[54]  J. Karagiannis,et al.  Intracellular pH homeostasis during cell-cycle progression and growth state transition in Schizosaccharomyces pombe. , 2001, Journal of cell science.

[55]  Xinran Liu,et al.  The Golgi-Associated Hook3 Protein Is a Member of a Novel Family of Microtubule-Binding Proteins , 2001, The Journal of cell biology.

[56]  P. Dawson,et al.  Antisense palmitoyl protein thioesterase 1 (PPT1) treatment inhibits PPT1 activity and increases cell death in LA‐N‐5 neuroblastoma cells , 2000, Journal of neuroscience research.

[57]  R. Sternglanz,et al.  A novel Golgi membrane protein is part of a GTPase‐binding protein complex involved in vesicle targeting , 2000, The EMBO journal.

[58]  J. Freedman,et al.  Aspartic Proteases from the Nematode Caenorhabditis elegans , 2000, The Journal of Biological Chemistry.

[59]  S. Louvet-Vallée ERM proteins: From cellular architecture to cell signaling , 2000, Biology of the cell.

[60]  K. Wisniewski,et al.  CLN3 protein regulates lysosomal pH and alters intracellular processing of Alzheimer's amyloid-beta protein precursor and cathepsin D in human cells. , 2000, Molecular genetics and metabolism.

[61]  J. Urano,et al.  The Saccharomyces cerevisiae Rheb G-protein Is Involved in Regulating Canavanine Resistance and Arginine Uptake* , 2000, The Journal of Biological Chemistry.

[62]  M. Fortini,et al.  Modeling human neurodegenerative diseases in Drosophila: on a wing and a prayer. , 2000, Trends in genetics : TIG.

[63]  G. Dawson,et al.  Palmitoyl Protein Thioesterase 1 Protects Against Apoptosis Mediated by Ras—Akt—Caspase Pathway in Neuroblastoma Cells , 2000, Journal of neurochemistry.

[64]  B. Davidson,et al.  Batten disease: evaluation of CLN3 mutations on protein localization and function. , 2000, Human molecular genetics.

[65]  G. Griffiths,et al.  Involvement of ezrin/moesin in de novo actin assembly on phagosomal membranes , 2000, The EMBO journal.

[66]  A. Hinnen,et al.  Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach , 1999, Molecular and General Genetics MGG.

[67]  B. Regenberg,et al.  Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae , 1999, Current Genetics.

[68]  S. Fields,et al.  A biochemical genomics approach for identifying genes by the activity of their products. , 1999, Science.

[69]  B. Séraphin,et al.  A generic protein purification method for protein complex characterization and proteome exploration , 1999, Nature Biotechnology.

[70]  F. Sherman,et al.  Phenotypic reversal of the btn1 defects in yeast by chloroquine: a yeast model for Batten disease. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[71]  V. Culotta,et al.  Oxidative Stress and Iron Are Implicated in Fragmenting Vacuoles of Saccharomyces cerevisiae Lacking Cu,Zn-Superoxide Dismutase* , 1999, The Journal of Biological Chemistry.

[72]  Ronald W. Davis,et al.  Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. , 1999, Science.

[73]  T. Ferea,et al.  Action of BTN1, the yeast orthologue of the gene mutated in Batten disease , 1999, Nature Genetics.

[74]  K. Wisniewski,et al.  Studies of membrane association of CLN3 protein. , 1999, Molecular genetics and metabolism.

[75]  K. Wisniewski,et al.  Expression studies of CLN3 protein (battenin) in fusion with the green fluorescent protein in mammalian cells in vitro. , 1999, Molecular genetics and metabolism.

[76]  K. Wisniewski,et al.  Posttranslational modification of CLN3 protein and its possible functional implication. , 1999, Molecular genetics and metabolism.

[77]  F. Sherman,et al.  Studies of pH regulation by Btn1p, the yeast homolog of human Cln3p. , 1999, Molecular genetics and metabolism.

[78]  A. Das,et al.  Anomalies of mitochondrial ATP synthase regulation in four different types of neuronal ceroid lipofuscinosis. , 1999, Molecular genetics and metabolism.

[79]  B. Davidson,et al.  Intracellular trafficking of the JNCL protein CLN3. , 1999, Molecular genetics and metabolism.

[80]  H. Krämer,et al.  Genetic dissection of endocytic trafficking in Drosophila using a horseradish peroxidase-bride of sevenless chimera: hook is required for normal maturation of multivesicular endosomes. , 1999, Molecular biology of the cell.

[81]  H. Krämer,et al.  Genetic analysis of hook, a gene required for endocytic trafficking in drosophila. , 1999, Genetics.

[82]  H. C. Choi,et al.  The subcellular location of the yeast Saccharomyces cerevisiae homologue of the protein defective in the juvenile form of Batten disease. , 1998, Biochemical and biophysical research communications.

[83]  F. Sherman,et al.  A yeast model for the study of Batten disease. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[84]  T. Toda,et al.  Regulated vacuole fusion and fission in Schizosaccharomyces pombe: an osmotic response dependent on MAP kinases , 1998, Current Biology.

[85]  R. Plasterk,et al.  Reverse genetics by chemical mutagenesis in Caenorhabditis elegans , 1997, Nature Genetics.

[86]  P. Munroe,et al.  Structure of the CLN3 gene and predicted structure, location and function of CLN3 protein. , 1997, Neuropediatrics.

[87]  R. Pullarkat,et al.  Farnesylation of Batten Disease CLN3 Protein , 1997, Neuropediatrics.

[88]  M. Breuning,et al.  Cross-species homology of the CLN3 gene. , 1997, Neuropediatrics.

[89]  I. Singh,et al.  Mitochondrial abnormalities in CLN2 and CLN3 forms of Batten disease. , 1996, Molecular and chemical neuropathology.

[90]  Thomas Fiedler,et al.  A new efficient gene disruption cassette for repeated use in budding yeast , 1996, Nucleic Acids Res..

[91]  H. Krämer,et al.  Mutations in the Drosophila hook gene inhibit endocytosis of the boss transmembrane ligand into multivesicular bodies , 1996, The Journal of cell biology.

[92]  R. Schekman,et al.  Selective Uptake of Cytosolic, Peroxisomal, and Plasma Membrane Proteins into the Yeast Lysosome for Degradation (*) , 1996, The Journal of Biological Chemistry.

[93]  J. Winther,et al.  Review: Biosynthesis and function of yeast vacuolar proteases , 1996, Yeast.

[94]  J. Sulston,et al.  The genome of Caenorhabditis elegans. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[95]  J. Haines,et al.  Isolation of a novel gene underlying batten disease, CLN3 , 1995, Cell.

[96]  L. Peltonen,et al.  Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis , 1995, Nature.

[97]  D. Wolf,et al.  Biogenesis of the yeast vacuole (lysosome). The use of active-site mutants of proteinase yscA to determine the necessity of the enzyme for vacuolar proteinase maturation and proteinase yscB stability. , 1995, European journal of biochemistry.

[98]  D N Palmer,et al.  Batten disease and the ATP synthase subunit c turnover pathway: raising antibodies to subunit c. , 1995, American journal of medical genetics.

[99]  H. Pihko,et al.  Palmitate oxidation in muscle mitochondria of patients with the juvenile form of neuronal ceroid-lipofuscinosis. , 1995, American journal of medical genetics.

[100]  M. Bennett,et al.  Mitochondrial damage results in a reversible increase in lysosomal storage material in lymphoblasts from patients with juvenile neuronal ceroid-lipofuscinosis (Batten Disease). , 1995, American journal of medical genetics.

[101]  H. Feldmann,et al.  II. Yeast sequencing reports. Analysis of a 70kb region on the right arm of yeast chromosome II , 1994 .

[102]  L. Fliegel,et al.  Intracellular pH inSchizosaccharomyces pombe — Comparison withSaccharomyces cerevisiae , 1993, Molecular and Cellular Biochemistry.

[103]  I. Mellman The importance of being acid: the role of acidification in intracellular membrane traffic. , 1992, The Journal of experimental biology.

[104]  M. Yamamoto,et al.  Schizosaccharomyces pombe sxa1+ and sxa2+ encode putative proteases involved in the mating response , 1992, Molecular and cellular biology.

[105]  J. Walker,et al.  Mitochondrial ATP synthase subunit c storage in the ceroid-lipofuscinoses (Batten disease). , 1992, American journal of medical genetics.

[106]  B. Lake,et al.  Lysosomal storage of subunit c of mitochondrial ATP synthase in Batten's disease (ceroid-lipofuscinosis). , 1991, The Biochemical journal.

[107]  F. Corpet Multiple sequence alignment with hierarchical clustering. , 1988, Nucleic acids research.

[108]  Y. Anraku,et al.  Dynamic aspects of vacuolar and cytosolic amino acid pools of Saccharomyces cerevisiae , 1988, Journal of bacteriology.

[109]  J. Tang,et al.  Evolution in the structure and function of aspartic proteases , 1987, Journal of cellular biochemistry.

[110]  M. Innis,et al.  The PEP4 gene encodes an aspartyl protease implicated in the posttranslational regulation of Saccharomyces cerevisiae vacuolar hydrolases , 1986, Molecular and cellular biology.

[111]  D. Kaback,et al.  Isolation and functional analysis of sporulation-induced transcribed sequences from Saccharomyces cerevisiae , 1986, Molecular and cellular biology.

[112]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[113]  R. Parker,et al.  PEP4 gene function is required for expression of several vacuolar hydrolases in Saccharomyces cerevisiae. , 1982, Genetics.

[114]  S. Brenner The genetics of Caenorhabditis elegans. , 1974, Genetics.

[115]  J. Rapola,et al.  Infantile Type of So‐called Neuronal Ceroid‐lipofuscinosis , 1973, Journal of the neurological sciences.

[116]  D. Pearce,et al.  The neuronal ceroid lipofuscinoses , 2007, NeuroMolecular Medicine.

[117]  A. Wiemken,et al.  Characterization of amino acid pools in the vacuolar compartment of Saccharomyces cerevisiae , 2004, Archives of Microbiology.

[118]  P. Dawson,et al.  Role of palmitoyl-protein thioesterase in cell death: implications for infantile neuronal ceroid lipofuscinosis. , 2001, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society.

[119]  G. van Ommen,et al.  Caenorhabditis elegans homologues of the CLN3 gene, mutated in juvenile neuronal ceroid lipofuscinosis. , 2001, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society.

[120]  A. Das,et al.  Altered levels of high-energy phosphate compounds in fibroblasts from different forms of neuronal ceroid lipofuscinoses: further evidence for mitochondrial involvement. , 2001, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society.

[121]  D. Pearce Localization and processing of CLN3, the protein associated to batten disease: Where is it and what does it do? , 2000, Journal of neuroscience research.

[122]  A. Adams,et al.  Methods in yeast genetics : a Cold Spring Harbor Laboratory course manual , 1998 .

[123]  L. Peltonen,et al.  Biosynthesis and intracellular targeting of the CLN3 protein defective in Batten disease. , 1998, Human molecular genetics.

[124]  I Mellman,et al.  Acidification of the endocytic and exocytic pathways. , 1986, Annual review of biochemistry.