Explicit error syndrome calculation for quantum graph codes

In Schlingemann (J Math Phys 45:4322, 2004) it was proved that for any calculated error syndrome for quantum graph codes exists an appropriate local correction operation. In this paper we propose an explicit operator to perform the calculation of the syndrome to these codes. Our method makes use of the inverse quantum Fourier transform.

[1]  Markus Grassl,et al.  Generalized concatenated quantum codes , 2009 .

[2]  T. Beth,et al.  Quantum BCH Codes , 1999, quant-ph/9910060.

[3]  F. Gall,et al.  NP-hardness of decoding quantum error-correction codes , 2010, 1009.1319.

[4]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[5]  Marc Fossorier,et al.  Applied Algebra, Algebraic Algorithms and Error-Correcting Codes , 2003, Lecture Notes in Computer Science.

[6]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[7]  D. Schlingemann Error syndrome calculation for graph codes on a one-way quantum computer: Towards a quantum memory , 2004 .

[8]  Dirk Schlingemann,et al.  Quantum error-correcting codes associated with graphs , 2000, ArXiv.

[9]  Andreas Klappenecker,et al.  Graphs, quadratic forms, and quantum codes , 2002, Proceedings IEEE International Symposium on Information Theory,.

[10]  Markus Grassl,et al.  Multi-error-correcting amplitude damping codes , 2010, 2010 IEEE International Symposium on Information Theory.

[11]  Keqin Feng,et al.  Quantum codes [[6, 2, 3]]p and [[7, 3, 3]]p (p >= 3) exist , 2002, IEEE Trans. Inf. Theory.

[12]  Markus Grassl,et al.  Quantum Reed-Solomon Codes , 1999, AAECC.

[13]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[14]  A. Doherty,et al.  Thresholds for topological codes in the presence of loss. , 2009, Physical review letters.

[15]  Dirk Schlingemann Cluster states, algorithms and graphs , 2004, Quantum Inf. Comput..

[16]  R. Griffiths Graph States and Graph Codes , 2014 .

[17]  Sean Hallgren,et al.  An improved quantum Fourier transform algorithm and applications , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.