A Non-myopic Utility Function for Statistical Global Optimization Algorithms

The high cost of providing “worst-case” solutions to global optimization problems has motivated the development of ”average-case“ algorithms that rely on a statistical model of the objective function. The critical role of the statistical model is to guide the search for the optimum. The standard approach is to define a utility function u(x) that in a certain sense reflects the benefit of evaluating the function at x. A proper utility function needs to strike a balance between the immediate benefit of evaluating the function at x – a myopic consideration; and the overall effect of this choice on the performance of the algorithm – a global criterion. The utility functions currently used in this context are heuristically modified versions of some myopic utility functions. We propose using a new utility function that is provably a globally optimal utility function in a non-adaptive context (where the model of the function values remains unchanged). In the adaptive context, this utility function is not necessarily optimal, however, given its global nature, we expect that its use will lead to the improved performance of statistical global optimization algorithms. To illustrate the approach, and to test the above assertion, we apply this utility function to an existing adaptive multi-dimensional statistical global optimization algorithm and provide experimental comparisons with the original algorithm.

[1]  D. Rosenfield,et al.  Optimal Strategies for Selling an Asset , 1983 .

[2]  Antanas Zilinskas,et al.  A review of statistical models for global optimization , 1992, J. Glob. Optim..

[3]  Fabio Schoen,et al.  Sequential stopping rules for the multistart algorithm in global optimisation , 1987, Math. Program..

[4]  Harold J. Kushner,et al.  A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise , 1964 .

[5]  A. A. Zhigli︠a︡vskiĭ,et al.  Theory of Global Random Search , 1991 .

[6]  David A. Castañón,et al.  Optimality of index policies for a sequential sampling problem , 1999, IEEE Trans. Autom. Control..

[7]  Fabio Schoen,et al.  Optimal and sub-optimal stopping rules for the Multistart algorithm in global optimization , 1992, Math. Program..

[8]  Andrzej Ruszczynski,et al.  On Optimal Allocation of Indivisibles Under Uncertainty , 1998, Oper. Res..

[9]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[10]  Bruce E. Stuckman,et al.  A global search method for optimizing nonlinear systems , 1988, IEEE Trans. Syst. Man Cybern..

[11]  J. Mockus,et al.  Bayesian approach to global optimization and application to multiobjective and constrained problems , 1991 .

[12]  Jonas Mockus,et al.  Application of Bayesian approach to numerical methods of global and stochastic optimization , 1994, J. Glob. Optim..

[13]  János D. Pintér,et al.  Global optimization in action , 1995 .

[14]  J. Mockus,et al.  The Bayesian approach to global optimization , 1989 .

[15]  M. Weitzman Optimal search for the best alternative , 1978 .

[16]  Francesco Zirilli,et al.  A global optimization algorithm using stochastic differential equations , 1988, TOMS.

[17]  J D Pinter,et al.  Global Optimization in Action—Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications , 2010 .

[18]  Bruno Betrò,et al.  Bayesian methods in global optimization , 1991, J. Glob. Optim..

[19]  Z. Tang Adaptive partitioned random search to global optimization , 1994, IEEE Trans. Autom. Control..

[20]  Pirooz Vakili,et al.  Competing intelligent search agents in global optimization , 1996 .

[21]  A. M. Meystel,et al.  Intelligent systems: a semiotic perspective , 1996, Proceedings of the 1996 IEEE International Symposium on Intelligent Control.

[22]  B. E. Stuckman,et al.  Finding the “best” optimal control using global search , 1993 .