Hydrogen embrittlement and failure mechanisms of multi-principal element alloys: A review

[1]  X. H. Chen,et al.  Enhanced resistance to hydrogen embrittlement in a CrCoNi-based medium-entropy alloy via grain-boundary decoration of boron , 2022, Materials Research Letters.

[2]  D. Wan,et al.  Hydrogen embrittlement of additively manufactured AlCoCrFeNi2.1 eutectic high-entropy alloy , 2022, Corrosion Science.

[3]  Dingshun Yan,et al.  Effects of interstitial C and N on hydrogen embrittlement behavior of non-equiatomic metastable FeMnCoCr high-entropy alloys , 2021, Corrosion Science.

[4]  Wei Li,et al.  Hydrogen embrittlement and hydrogen diffusion behavior in interstitial nitrogen-alloyed austenitic steel , 2021 .

[5]  Dingshun Yan,et al.  Improving the hydrogen embrittlement resistance of a selective laser melted high-entropy alloy via modifying the cellular structures , 2021 .

[6]  M. Koyama,et al.  Hydrogen embrittlement and associated surface crack growth in fine-grained equiatomic CoCrFeMnNi high-entropy alloys with different annealing temperatures evaluated by tensile testing under in situ hydrogen charging , 2021 .

[7]  D. S. dos Santos,et al.  Effect of Alloying Elements on the Hydrogen Diffusion and Trapping in High Entropy Alloys , 2021, SSRN Electronic Journal.

[8]  Xiaogang Li,et al.  Hydrogen induced microstructure evolution and cracking mechanism in a metastable dual-phase high-entropy alloy , 2021, Materials Science and Engineering: A.

[9]  Wei-hong Liu,et al.  Effect of Mo doping on the gaseous hydrogen embrittlement of a CoCrNi medium-entropy alloy , 2021 .

[10]  T. Falcade,et al.  An integrated experimental and modeling approach to determine hydrogen diffusion and trapping in a high-strength steel , 2021, International Journal of Hydrogen Energy.

[11]  Simo-Pekka Hannula,et al.  Hydrogen Effects in Equiatomic CrFeNiMn Alloy Fabricated by Laser Powder Bed Fusion , 2021, Metals.

[12]  H. Bei,et al.  Hydrogen-enhanced compatibility constraint for intergranular failure in FCC FeNiCoCrMn high-entropy alloy , 2021 .

[13]  Xubin Wu,et al.  Effect of hydrogen charging time on hydrogen blister and hydrogen-induced cracking of pure iron , 2021 .

[14]  Chunsheng Lu,et al.  Hydrogen induced slowdown of spallation in high entropy alloy under shock loading , 2021, International Journal of Plasticity.

[15]  H. Maier,et al.  The effect of nitrogen alloying on hydrogen-assisted plastic deformation and fracture in FeMnNiCoCr high-entropy alloys , 2021 .

[16]  Zhengrong Zhou,et al.  The dependence of hydrogen embrittlement on hydrogen transport in selective laser melted 304L stainless steel , 2021 .

[17]  G. Gou,et al.  Effect of recrystallization annealing treatment on the hydrogen embrittlement behavior of equimolar CoCrFeMnNi high entropy alloy , 2020 .

[18]  W. Bleck,et al.  Impact of precipitates on the hydrogen embrittlement behavior of a V-alloyed medium-manganese austenitic stainless steel , 2020, Journal of Materials Research and Technology.

[19]  W. Curtin,et al.  First principles study of the effect of hydrogen in austenitic stainless steels and high entropy alloys , 2020 .

[20]  L. Qiao,et al.  Atomic-scale investigation of deep hydrogen trapping in NbC/α-Fe semi-coherent interfaces , 2020 .

[21]  M. Koyama,et al.  Effects of Mn Content and Grain Size on Hydrogen Embrittlement Susceptibility of Face-Centered Cubic High-Entropy Alloys , 2020, Metallurgical and Materials Transactions A.

[22]  Yoon-Uk Heo,et al.  Effect of V/Mo ratio on the evolution of carbide precipitates and hydrogen embrittlement of tempered martensitic steel , 2020 .

[23]  J. Suh,et al.  Effect of gaseous hydrogen embrittlement on the mechanical properties of additively manufactured CrMnFeCoNi high-entropy alloy strengthened by in-situ formed oxide , 2020 .

[24]  Kui Liu,et al.  First-principles study of hydrogen trapping behavior in face centered cubic metals (M=Ni, Cu and Al) with monovacancy , 2020 .

[25]  M. Okayasu,et al.  The effect of precipitations (NbC and carbide) in Fe–C–Mn-xNb steels on hydrogen embrittlement characteristics , 2020 .

[26]  F. Goodwin,et al.  Suppression of liquid-metal-embrittlement by twin-induced grain boundary engineering approach , 2020, Materialia.

[27]  Junghoon Lee,et al.  Role of Hydrogen and Temperature in Hydrogen Embrittlement of Equimolar CoCrFeMnNi High-entropy Alloy , 2020, Metals and Materials International.

[28]  D. Raabe,et al.  Hydrogen resistance of a 1 GPa strong equiatomic CoCrNi medium entropy alloy , 2020 .

[29]  E. Akiyama,et al.  Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention , 2020, Acta Metallurgica Sinica (English Letters).

[30]  M. Brochu,et al.  Subtleties Behind Hydrogen Embrittlement of Cadmium-Plated 4340 Steel Revealed by Thermal Desorption Spectroscopy and Sustained-Load Tests , 2020, Metallurgical and Materials Transactions A.

[31]  H. Noguchi,et al.  Gaseous hydrogen embrittlement of a Ni-free austenitic stainless steel containing 1 mass% nitrogen: Effects of nitrogen-enhanced dislocation planarity , 2020 .

[32]  S. Tsurekawa,et al.  Low-angle boundary engineering for improving high-cycle fatigue property of 430 ferritic stainless steel , 2020, Journal of Materials Science.

[33]  S. Albert,et al.  Grain boundary engineering to overcome temper embrittlement in martensitic steel , 2020 .

[34]  D. Wan,et al.  In-situ observation of martensitic transformation in an interstitial metastable high-entropy alloy during cathodic hydrogen charging , 2019 .

[35]  Arnaud Macadre,et al.  Control of hydrogen-induced failure in metastable austenite by grain size refinement , 2019 .

[36]  D. Wan,et al.  Effect of hydrogen-induced surface steps on the nanomechanical behavior of a CoCrFeMnNi high-entropy alloy revealed by in-situ electrochemical nanoindentation , 2019, Intermetallics.

[37]  X. Y. Wu,et al.  Swamps of hydrogen in equiatomic FeCuCrMnMo alloys: First-principles calculations , 2019, Acta Materialia.

[38]  Qian Xu,et al.  Hydrogen isotope permeation and retention behavior in the CoCrFeMnNi high-entropy alloy , 2019, Journal of Nuclear Materials.

[39]  Zhiming Li,et al.  Hydrogen susceptibility of an interstitial equimolar high-entropy alloy revealed by in-situ electrochemical microcantilever bending test , 2019, Materials Science and Engineering: A.

[40]  U. Ramamurty,et al.  Influences of hydrogen charging method on the hydrogen distribution and nanomechanical properties of face-centered cubic high-entropy alloy: A comparative study , 2019, Scripta Materialia.

[41]  M. Koyama,et al.  Grain refinement effect on hydrogen embrittlement resistance of an equiatomic CoCrFeMnNi high-entropy alloy , 2019, International Journal of Hydrogen Energy.

[42]  U. Ramamurty,et al.  Influence of hydrogen on incipient plasticity in CoCrFeMnNi high-entropy alloy , 2019, Scripta Materialia.

[43]  Tingguang Liu,et al.  Grain boundary engineering for improving stress corrosion cracking of 304 stainless steel , 2019, Materials Science and Technology.

[44]  Chenyang Lu,et al.  A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy , 2019, Journal of Materials Science & Technology.

[45]  P. Liaw,et al.  Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures , 2018, Science China Materials.

[46]  D. Ponge,et al.  Beating hydrogen with its own weapon: Nano-twin gradients enhance embrittlement resistance of a high-entropy alloy , 2018, Materials Today.

[47]  Dierk Raabe,et al.  Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes , 2018, Nature.

[48]  L. Dai,et al.  Strong resistance to hydrogen embrittlement of high-entropy alloy , 2018, Materials Science and Engineering: A.

[49]  D. Radford,et al.  Atomistic simulation study of the hydrogen diffusion in nickel , 2018, Computational Materials Science.

[50]  I. M. Robertson,et al.  Hydrogen embrittlement of the equi-molar FeNiCoCr alloy , 2018, Acta Materialia.

[51]  Jinyang Zheng,et al.  Effect of plastic deformation at room temperature on hydrogen diffusion of S30408 , 2018, International Journal of Hydrogen Energy.

[52]  Sung Hyuk Park,et al.  Ultrahigh-strength CoCrFeMnNi high-entropy alloy wire rod with excellent resistance to hydrogen embrittlement , 2018, Materials Science and Engineering: A.

[53]  Yong Yang,et al.  On Lattice Distortion in High Entropy Alloys , 2018, Front. Mater..

[54]  C. Tasan,et al.  Comparative study of hydrogen embrittlement in stable and metastable high-entropy alloys , 2018, Scripta Materialia.

[55]  Chong Soo Lee,et al.  Grain boundary engineering approach to improve hydrogen embrittlement resistance in Fe-Mn-C TWIP steel , 2018 .

[56]  D. Ponge,et al.  Hydrogen embrittlement of an interstitial equimolar high-entropy alloy , 2018 .

[57]  Xiaolong Song,et al.  A comparative study of hydrogen embrittlement of 20SiMn2CrNiMo, PSB1080 and PH13-8Mo high strength steels , 2018 .

[58]  Heung Nam Han,et al.  Influence of pre-strain on the gaseous hydrogen embrittlement resistance of a high-entropy alloy , 2018 .

[59]  H. Bei,et al.  Hydrogen embrittlement in compositionally complex FeNiCoCrMn FCC solid solution alloy , 2017 .

[60]  Changfeng Chen,et al.  Diffusion coefficient of hydrogen interstitial atom in α-Fe, γ-Fe and ε-Fe crystals by first-principle calculations , 2017 .

[61]  Cheolho Park,et al.  Effect of grain size on the resistance to hydrogen embrittlement of API 2W Grade 60 steels using in situ slow-strain-rate testing , 2017 .

[62]  E. Akiyama,et al.  Effect of heat treatment on hydrogen-assisted fracture behavior of PH13-8Mo steel , 2017 .

[63]  D. Raabe,et al.  Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy , 2017, Scientific Reports.

[64]  M. P. Phaniraj,et al.  Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement , 2017 .

[65]  Y. Mine,et al.  Effect of ultrafine grain refinement on hydrogen embrittlement of metastable austenitic stainless steel , 2017 .

[66]  U. Ramamurty,et al.  Hydrogen-induced nanohardness variations in a CoCrFeMnNi high-entropy alloy , 2017 .

[67]  K. Verbeken,et al.  Effect of deformation and charging conditions on crack and blister formation during electrochemical hydrogen charging , 2017 .

[68]  N. Tsuji,et al.  Effect of strain rate on hydrogen embrittlement in low-carbon martensitic steel , 2017 .

[69]  C. Tasan,et al.  Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys , 2017, Scientific Reports.

[70]  U. Jansson,et al.  Superior hydrogen storage in high entropy alloys , 2016, Scientific Reports.

[71]  Dierk Raabe,et al.  Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures , 2016 .

[72]  M. Koyama,et al.  Hydrogen Embrittlement Susceptibility of Fe-Mn Binary Alloys with High Mn Content: Effects of Stable and Metastable ε-Martensite, and Mn Concentration , 2016, Metallurgical and Materials Transactions A.

[73]  H. Abreu,et al.  Texture and grain boundary study in high strength Fe–18Ni–Co steel related to hydrogen embrittlement , 2016 .

[74]  Young Kook Lee,et al.  The effect of Si on hydrogen embrittlement of Fe-18Mn-0.6C-xSi twinning-induced plasticity steels , 2016 .

[75]  E. Holmström,et al.  Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy , 2015 .

[76]  A. Schwedt,et al.  Temperature effect on deformation mechanisms and mechanical properties of a high manganese C+N alloyed austenitic stainless steel , 2015 .

[77]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[78]  D. Raabe,et al.  The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe–Mn–(Al–Si) steels investigated by experiment and theory , 2014 .

[79]  G. Eggeler,et al.  The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy , 2013 .

[80]  C. Ouyang,et al.  Hydrogen solution in tetrahedral or octahedral interstitial sites in Al , 2011 .

[81]  Y. Mine,et al.  Hydrogen uptake in austenitic stainless steels by exposure to gaseous hydrogen and its effect on tensile deformation , 2011 .

[82]  V. Kuokkala,et al.  Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate , 2010 .

[83]  T. Ahlgren,et al.  Diffusion of hydrogen in bcc tungsten studied with first principle calculations , 2010 .

[84]  U. Prahl,et al.  Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels , 2009 .

[85]  A. Juan,et al.  Comparative study of H-atom location, electronic and chemical bonding in ideal and vacancy containing-FCC iron , 2009 .

[86]  Yansheng Zhang,et al.  Effect of Si content on the stacking fault energy in γ-Fe–Mn–Si–C alloys: Part I. X-ray diffraction line profile analysis , 2009 .

[87]  R. Ritchie,et al.  Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials , 2009 .

[88]  S. Gesari,et al.  Simulation of hydrogen trapping at defects in Pd , 2009 .

[89]  J. Chêne,et al.  Hydrogen uptake in 316L stainless steel: Consequences on the tensile properties , 2006 .

[90]  D. Sholl,et al.  A comparison of hydrogen diffusivities in Pd and CuPd alloys using density functional theory , 2003 .

[91]  A. M. Brass,et al.  Accelerated diffusion of hydrogen along grain boundaries in nickel , 1996 .

[92]  W. Beck,et al.  Hydrogen permeation in metals as a function of stress, temperature and dissolved hydrogen concentration , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[93]  X. Zu,et al.  The effect of hydrogen on the mechanical properties of high entropy alloy TiZrHfMoNb: First-principles investigation , 2021 .

[94]  C. Tasan,et al.  Localized Plasticity and Associated Cracking in Stable and Metastable High-Entropy Alloys Pre-Charged with Hydrogen , 2018 .

[95]  C. Tasan,et al.  A new design concept for prevention of hydrogen-induced mechanical degradation: Viewpoints of metastability and high entropy , 2018 .

[96]  C. S. Marchi,et al.  Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures , 2007 .

[97]  H. Hagi,et al.  Diffusion Coefficient of Hydrogen in Pure Iron between 230 and 300 K , 1979 .

[98]  D. Wan,et al.  Understanding the hydrogen effect on pop-in behavior of an equiatomic high-entropy alloy during in-situ nanoindentation , 2022 .