Mutations have been designed that disrupt the tertiary structure of yeast tRNA(Asp). The effects of these mutations on both tRNA structure and specific aspartylation by yeast aspartyl-tRNA synthetase were assayed. Mutations that disrupt tertiary interactions involving the D-stem or D-loop result in destabilization of the base-pairing in the D-stem, as monitored by nuclease digestion and chemical modification studies. These mutations also decrease the specificity constant (kcat/Km) for aspartylation by aspartyl-tRNA synthetase up to 10(3)-10(4) fold. The size of the T-loop also influences tRNA(Asp) structure and function; change of its T-loop to a tetraloop (-UUCG-) sequence results in a denatured D-stem and an almost 10(4) fold decrease of kcat/Km for aspartylation. The negative effects of these mutations on aspartylation activity are significantly alleviated by additional mutations that stabilize the D-stem. These results indicate that a critical role of tertiary structure in tRNA(Asp) for aspartylation is the maintenance of a base-paired D-stem.