The HOL Light manual (1.1)

ing away a bit from the implementation in CAML, we can represent the rules in the usual form as: Γ ` p ∆ ` q Γ ∪∆ ` p ∧ q CONJ 1Although HOL uses a sequent presentation, the conventional derived rules are natural deduction rules, i.e. introduction and elimination on the right, rather than left and right introduction.

[1]  Tom Melham,et al.  Reasoning with Inductively Defined Relations in the HOL Theorem Prover , 1992 .

[2]  Alfred Tarski,et al.  Der Wahrheitsbegriff in den formalisierten Sprachen , 1935 .

[3]  Rafael Dueire Lins,et al.  Garbage collection: algorithms for automatic dynamic memory management , 1996 .

[4]  J. Heijenoort From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .

[5]  Gottlob Frege,et al.  The basic laws of arithmetic : exposition of the system , 1966 .

[6]  M. Gordon,et al.  Introduction to HOL: a theorem proving environment for higher order logic , 1993 .

[7]  Jeffrey C. Lagarias,et al.  The 3x + 1 Problem and its Generalizations , 1985 .

[8]  H. Carr Tractatus Logico-Philosophicus , 1923, Nature.

[9]  M. Schönfinkel Über die Bausteine der mathematischen Logik , 1924 .

[10]  Michael J. C. Gordon,et al.  Edinburgh LCF: A mechanised logic of computation , 1979 .

[11]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[12]  Donald W. Loveland,et al.  Mechanical Theorem-Proving by Model Elimination , 1968, JACM.

[13]  Piotr Rudnicki,et al.  An Overview of the MIZAR Project , 1992 .

[14]  Lawrence C. Paulson,et al.  A Higher-Order Implementation of Rewriting , 1983, Sci. Comput. Program..

[15]  John Harrison,et al.  Optimizing Proof Search in Model Elimination , 1996, CADE.

[16]  R. Carnap Logical Syntax of Language , 1937 .

[17]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[18]  Tobias Nipkow,et al.  Ordered Rewriting and Confluence , 1990, CADE.

[19]  Bertram Raphael,et al.  The structure of programming languages , 1966, CACM.

[20]  Dale Miller,et al.  A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple Unification , 1991, J. Log. Comput..

[21]  M. Beeson Foundations of Constructive Mathematics: Metamathematical Studies , 1985 .

[22]  Harry G. Mairson Deciding ML typability is complete for deterministic exponential time , 1989, POPL '90.

[23]  G. Plotkin,et al.  Proof, language, and interaction: essays in honour of Robin Milner , 2000 .

[24]  A. K. Wmght Polymorphism for imperative languages without imperative types , 1993 .

[25]  Lawrence C. Paulson,et al.  Logic and computation - interactive proof with Cambridge LCF , 1987, Cambridge tracts in theoretical computer science.

[26]  Polskie Towarzystwo Matematyczne Annales de la Société Polonaise de Mathématique , 1952 .

[27]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[28]  Peter Aczel,et al.  An Introduction to Inductive Definitions , 1977 .

[29]  D. Prawitz Natural Deduction: A Proof-Theoretical Study , 1965 .

[30]  John W. Backus,et al.  Can programming be liberated from the von Neumann style?: a functional style and its algebra of programs , 1978, CACM.

[31]  John Harrison,et al.  Inductive Definitions: Automation and Application , 1995, TPHOLs.

[32]  Michael J. C. Gordon,et al.  From LCF to HOL: a short history , 2000, Proof, Language, and Interaction.

[33]  Michel Mauny,et al.  Functional programming using Caml Light , 1995 .

[34]  D. Neel Tools and Notions for Program Construction: An Advanced Course , 1982 .

[35]  Haskell B. Curry Grundlagen der kombinatorischen Logik , 1930 .

[36]  Jim Alves-Foss,et al.  Higher Order Logic Theorem Proving and its Applications 8th International Workshop, Aspen Grove, Ut, Usa, September 11-14, 1995 : Proceedings , 1995 .

[37]  Elaine J. Weyuker,et al.  Computability, complexity, and languages - fundamentals of theoretical computer science , 2014, Computer science and applied mathematics.

[38]  Robin Milner,et al.  A Theory of Type Polymorphism in Programming , 1978, J. Comput. Syst. Sci..

[39]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .