The HOL Light manual (1.1)
暂无分享,去创建一个
[1] Tom Melham,et al. Reasoning with Inductively Defined Relations in the HOL Theorem Prover , 1992 .
[2] Alfred Tarski,et al. Der Wahrheitsbegriff in den formalisierten Sprachen , 1935 .
[3] Rafael Dueire Lins,et al. Garbage collection: algorithms for automatic dynamic memory management , 1996 .
[4] J. Heijenoort. From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .
[5] Gottlob Frege,et al. The basic laws of arithmetic : exposition of the system , 1966 .
[6] M. Gordon,et al. Introduction to HOL: a theorem proving environment for higher order logic , 1993 .
[7] Jeffrey C. Lagarias,et al. The 3x + 1 Problem and its Generalizations , 1985 .
[8] H. Carr. Tractatus Logico-Philosophicus , 1923, Nature.
[9] M. Schönfinkel. Über die Bausteine der mathematischen Logik , 1924 .
[10] Michael J. C. Gordon,et al. Edinburgh LCF: A mechanised logic of computation , 1979 .
[11] J. Lambek,et al. Introduction to higher order categorical logic , 1986 .
[12] Donald W. Loveland,et al. Mechanical Theorem-Proving by Model Elimination , 1968, JACM.
[13] Piotr Rudnicki,et al. An Overview of the MIZAR Project , 1992 .
[14] Lawrence C. Paulson,et al. A Higher-Order Implementation of Rewriting , 1983, Sci. Comput. Program..
[15] John Harrison,et al. Optimizing Proof Search in Model Elimination , 1996, CADE.
[16] R. Carnap. Logical Syntax of Language , 1937 .
[17] Alonzo Church,et al. A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.
[18] Tobias Nipkow,et al. Ordered Rewriting and Confluence , 1990, CADE.
[19] Bertram Raphael,et al. The structure of programming languages , 1966, CACM.
[20] Dale Miller,et al. A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple Unification , 1991, J. Log. Comput..
[21] M. Beeson. Foundations of Constructive Mathematics: Metamathematical Studies , 1985 .
[22] Harry G. Mairson. Deciding ML typability is complete for deterministic exponential time , 1989, POPL '90.
[23] G. Plotkin,et al. Proof, language, and interaction: essays in honour of Robin Milner , 2000 .
[24] A. K. Wmght. Polymorphism for imperative languages without imperative types , 1993 .
[25] Lawrence C. Paulson,et al. Logic and computation - interactive proof with Cambridge LCF , 1987, Cambridge tracts in theoretical computer science.
[26] Polskie Towarzystwo Matematyczne. Annales de la Société Polonaise de Mathématique , 1952 .
[27] A. Tarski. A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .
[28] Peter Aczel,et al. An Introduction to Inductive Definitions , 1977 .
[29] D. Prawitz. Natural Deduction: A Proof-Theoretical Study , 1965 .
[30] John W. Backus,et al. Can programming be liberated from the von Neumann style?: a functional style and its algebra of programs , 1978, CACM.
[31] John Harrison,et al. Inductive Definitions: Automation and Application , 1995, TPHOLs.
[32] Michael J. C. Gordon,et al. From LCF to HOL: a short history , 2000, Proof, Language, and Interaction.
[33] Michel Mauny,et al. Functional programming using Caml Light , 1995 .
[34] D. Neel. Tools and Notions for Program Construction: An Advanced Course , 1982 .
[35] Haskell B. Curry. Grundlagen der kombinatorischen Logik , 1930 .
[36] Jim Alves-Foss,et al. Higher Order Logic Theorem Proving and its Applications 8th International Workshop, Aspen Grove, Ut, Usa, September 11-14, 1995 : Proceedings , 1995 .
[37] Elaine J. Weyuker,et al. Computability, complexity, and languages - fundamentals of theoretical computer science , 2014, Computer science and applied mathematics.
[38] Robin Milner,et al. A Theory of Type Polymorphism in Programming , 1978, J. Comput. Syst. Sci..
[39] Donald E. Knuth,et al. The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .