Isoperimetric inequalities for eigenvalues of the Laplacian and the Schrödinger operator
暂无分享,去创建一个
[1] R. Brent. Table errata: Algorithms for minimization without derivatives (Prentice-Hall, Englewood Cliffs, N. J., 1973) , 1975 .
[2] L. Payne. A Note on Inequalities for Plate Eigenvalues , 1960 .
[3] R. Melrose. The inverse spectral problem for planar domains , 1996 .
[4] Dieter Gromes,et al. Über die asymptotische Verteilung der Eigenwerte des Laplace-Operators für Gebiete auf der Kugeloberfläche , 1966 .
[5] P. Duclos,et al. CURVATURE-INDUCED BOUND STATES IN QUANTUM WAVEGUIDES IN TWO AND THREE DIMENSIONS , 1995 .
[6] M. Solomjak,et al. Spectral Theory of Self-Adjoint Operators in Hilbert Space , 1987 .
[7] Steve Zelditch,et al. Spectral determination of analytic bi-axisymmetric plane domains , 2000 .
[8] R. Lavine. THE EIGENVALUE GAP FOR ONE-DIMENSIONAL CONVEX POTENTIALS , 1994 .
[9] A second eigenvalue bound for the Dirichlet Laplacian in hyperbolic space , 2005, math-ph/0511045.
[10] R. Courant,et al. Methods of Mathematical Physics , 1962 .
[11] R. Benguria,et al. On Rayleigh’s conjecture for the clamped plate and its generalization to three dimensions , 1995 .
[13] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[14] Lieb-Thirring Inequalities , 2000, math-ph/0003039.
[15] P. Buser,et al. Geometry and Spectra of Compact Riemann Surfaces , 1992 .
[16] Daniel Daners,et al. A Faber-Krahn inequality for Robin problems in any space dimension , 2006 .
[17] G. Pólya,et al. Isoperimetric inequalities in mathematical physics , 1951 .
[18] An Isoperimetric Inequality for Fundamental Tones of Free Plates , 2010, 1004.3318.
[19] S. Yau. Nonlinear Analysis In Geometry , 1986 .
[20] David L. Webb,et al. Isospectral plane domains and surfaces via Riemannian orbifolds , 1992 .
[21] G. Pólya,et al. ON THE RATIO OF CONSECUTIVE EIGENVALUES , 1956 .
[22] R. Brooks. Constructing isospectral manifolds , 1988 .
[23] R. Benguria,et al. Proof of the Payne-Pólya-Weinberger conjecture , 1991 .
[24] Burgess Davis. On the spectral gap for fixed membranes , 2001 .
[25] On the Cauchy Problem for a Dynamical Euler's Elastica , 2002, math/0202278.
[26] Optimal Eigenvalues for Some Laplacians and Schrödinger Operators Depending on Curvature , 1999, math-ph/9901022.
[27] L. M. Chasman. Vibrational modes of circular free plates under tension , 2010, 1004.3316.
[28] Toshikazu Sunada,et al. Riemannian coverings and isospectral manifolds , 1985 .
[29] Lower bounds of the gap between the first and second eigenvalues of the Schrödinger operator , 1986 .
[30] E. Lieb,et al. Bound for the Kinetic Energy of Fermions Which Proves the Stability of Matter , 1975 .
[31] C. Borell. The Brunn-Minkowski inequality in Gauss space , 1975 .
[32] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[33] E. Davies,et al. Heat kernels and spectral theory , 1989 .
[34] Steve Zelditch,et al. Inverse spectral problem for analytic domains, II: ℤ2-symmetric domains , 2009 .
[35] A sharp bound for the ratio of the first two Dirichlet eigenvalues of a domain in a hemisphere of ⁿ , 2000, math/0008088.
[36] L. Payne. Isoperimetric Inequalities and Their Applications , 1967 .
[37] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[38] E. Lieb,et al. Erratum: Bound for the Kinetic Energy of Fermions which Proves the Stability of Matter. (Physical Review Letters) , 1975 .
[39] James R. Munkres,et al. Topology; a first course , 1974 .
[40] J. R. Newman. The World of Mathematics , 1961 .
[41] Giovanni Landi,et al. Chern–Simons forms on principal superfiber bundles , 1990 .
[42] R. Benguria,et al. Isoperimetric Inequalities for Eigenvalues of the Laplacian , 2007 .
[43] E. Lieb,et al. Inequalities for the Moments of the Eigenvalues of the Schrodinger Hamiltonian and Their Relation to Sobolev Inequalities , 2002 .
[44] G. Talenti,et al. Elliptic equations and rearrangements , 1976 .
[45] J. Bernstein,et al. A variational characterization of the catenoid , 2010, 1012.3941.
[46] M. Ashbaugh. The Fundamental Gap , 2006 .
[47] Mark S. Ashbaugh,et al. Open Problems on Eigenvalues of the Laplacian , 1999 .
[48] B. Baumgartner,et al. The Laplacian of the Potential and the Order of Energy Levels , 1984 .
[49] Claudio Perez Tamargo. Can one hear the shape of a drum , 2008 .
[50] Mark S. Ashbaugh,et al. The universal eigenvalue bounds of Payne-Pólya-Weinberger, Hile-Protter, and H C Yang , 2002 .
[51] E. Lieb,et al. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .
[52] R. Benguria,et al. Log-concavity of the ground state of Schrödinger operators: A new proof of the Baumgartner-Grosse-Martin inequality , 1988 .
[53] R. Laugesen,et al. Fundamental tones and buckling loads of clamped plates , 1996 .
[54] T. Merkle,et al. Universal Bounds for Traces of the Dirichlet Laplace Operator , 2009 .
[55] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[56] E. Krahn,et al. Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises , 1925 .
[57] K. Thas,et al. Hearing shapes of drums — mathematical and physical aspects of isospectrality , 2010, 1101.1239.
[58] A lower bound for the ground state energy of a Schrodinger operator on a loop , 2005, math-ph/0508023.
[59] R. Benguria,et al. A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions , 1992 .
[60] I. Stakgold,et al. A Variational Theorem for ∇2u+ λu= 0 and its Application , 1952 .
[61] Å. Pleijel. A study of certain Green's functions with applications in the theory of vibrating membranes , 1954 .
[62] G. Szegö. [53–2] On the Vibrations of a Clamped Plate , 1982 .
[63] Isoperimetric Inequalities and Eigenvalues of the Laplacian Robert Osserman , 2010 .
[64] Shing-Tung Yau,et al. An Estimate of the Gap of the First Two Eigenvalues in the Schr , 2009, 0902.2250.
[65] G. Szegő,et al. Inequalities for Certain Eigenvalues of a Membrane of Given Area , 1954 .
[66] A Second Eigenvalue Bound for the Dirichlet Schrödinger Operator , 2005, math-ph/0511032.
[67] R. Bañuelos,et al. Gradient Estimates for the Ground State¶Schrödinger Eigenfunction and Applications , 2001 .
[68] D. Thompson,et al. A History of Greek Mathematics , 1922, Nature.
[69] Alexander Yu. Solynin,et al. An approach to symmetrization via polarization , 1999 .
[70] H. Weyl. Ramifications, old and new, of the eigenvalue problem , 1950 .
[71] R. Benguria,et al. Sharp Upper Bound to the First Nonzero Neumann Eigenvalue for Bounded Domains in Spaces of Constant Curvature , 1995 .
[72] N. Nadirashvili. Rayleigh's conjecture on the principal frequency of the clamped plate , 1995 .
[73] H. Fédérer. Geometric Measure Theory , 1969 .
[74] M. Kac. On Some Connections between Probability Theory and Differential and Integral Equations , 1951 .
[75] On condensation in the free-boson gas and the spectrum of the Laplacian , 1983 .
[76] J. Milnor,et al. EIGENVALUES OF THE LAPLACE OPERATOR ON CERTAIN MANIFOLDS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.
[77] Ben Andrews,et al. Proof of the fundamental gap conjecture , 2010, 1006.1686.
[78] Hans F. Weinberger,et al. An Isoperimetric Inequality for the N-Dimensional Free Membrane Problem , 1956 .
[79] Michael Loss,et al. Stability of Matter , 2005 .
[80] G. Talenti. On the first eigenvalue of the clamped plate , 1981 .
[81] Antoine Henrot,et al. Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .
[82] M. Loss,et al. On the Laplace Operator Penalized by Mean Curvature , 1998 .
[83] Hans von Mangoldt. Auszug aus einer Arbeit unter dem Titel : Zu Riemann's Abhandlung "Über die Anzahl der Primzahlen unter einer gegebenen Grösse" , 1894 .
[84] G Szegö,et al. NOTE TO MY PAPER "ON MEMBRANES AND PLATES". , 1958, Proceedings of the National Academy of Sciences of the United States of America.
[85] I. Chavel. Eigenvalues in Riemannian geometry , 1984 .
[86] R. Laugesen,et al. Inequalities for the first eigenvalues of the clamped plate and buckling problems , 1997 .
[87] Mark S. Ashbaugh,et al. Spectral Theory and Geometry: Isoperimetric and universal inequalities for eigenvalues , 1999 .
[88] W. R. Buckland,et al. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. , 1952 .
[89] J. Dodziuk. Eigenvalues of the Laplacian on forms , 1982 .
[90] Barry Simon,et al. Analysis of Operators , 1978 .
[91] E. Davies,et al. Spectral Theory and Differential Operators: Index , 1995 .
[92] Helmut Koch,et al. Über die Anzahl der Primzahlen unter einer gegebenen Größe , 1986 .
[93] G. Polya,et al. Isoperimetric Inequalities in Mathematical Physics. (AM-27), Volume 27 , 1951 .
[94] R. Benguria,et al. Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrödinger operators with symmetric single-well potentials , 1989 .
[95] H. McKean,et al. Curvature and the Eigenvalues of the Laplacian , 1967 .
[96] C. Bandle. Isoperimetric inequalities and applications , 1980 .
[97] Transplantation Et Isospectralité II , 1993 .
[98] Kudrolli,et al. Experiments on not "hearing the shape" of drums. , 1994, Physical review letters.
[99] G. Szegö. On Membranes and Plates. , 1950, Proceedings of the National Academy of Sciences of the United States of America.
[100] E. Harrell,et al. Differential inequalities for Riesz means and Weyl-type bounds for eigenvalues , 2007, 0705.3673.
[101] R. Benguria,et al. A second proof of the Payne-Pólya-Weinberger conjecture , 1992 .
[102] On an isoperimetric inequality for a Schrödinger operator depending on the curvature of a loop , 2005, math/0505123.
[103] P. Bérard,et al. Transplantation et isospectralité. I , 1992 .
[104] Pedro R. S. Antunes. On the buckling eigenvalue problem , 2011 .