Isoperimetric inequalities for eigenvalues of the Laplacian and the Schrödinger operator

The purpose of this manuscript is to present a series of lecture notes on isoperimetric inequalities for the Laplacian, for the Schrödinger operator, and related problems.

[1]  R. Brent Table errata: Algorithms for minimization without derivatives (Prentice-Hall, Englewood Cliffs, N. J., 1973) , 1975 .

[2]  L. Payne A Note on Inequalities for Plate Eigenvalues , 1960 .

[3]  R. Melrose The inverse spectral problem for planar domains , 1996 .

[4]  Dieter Gromes,et al.  Über die asymptotische Verteilung der Eigenwerte des Laplace-Operators für Gebiete auf der Kugeloberfläche , 1966 .

[5]  P. Duclos,et al.  CURVATURE-INDUCED BOUND STATES IN QUANTUM WAVEGUIDES IN TWO AND THREE DIMENSIONS , 1995 .

[6]  M. Solomjak,et al.  Spectral Theory of Self-Adjoint Operators in Hilbert Space , 1987 .

[7]  Steve Zelditch,et al.  Spectral determination of analytic bi-axisymmetric plane domains , 2000 .

[8]  R. Lavine THE EIGENVALUE GAP FOR ONE-DIMENSIONAL CONVEX POTENTIALS , 1994 .

[9]  A second eigenvalue bound for the Dirichlet Laplacian in hyperbolic space , 2005, math-ph/0511045.

[10]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[11]  R. Benguria,et al.  On Rayleigh’s conjecture for the clamped plate and its generalization to three dimensions , 1995 .

[13]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[14]  Lieb-Thirring Inequalities , 2000, math-ph/0003039.

[15]  P. Buser,et al.  Geometry and Spectra of Compact Riemann Surfaces , 1992 .

[16]  Daniel Daners,et al.  A Faber-Krahn inequality for Robin problems in any space dimension , 2006 .

[17]  G. Pólya,et al.  Isoperimetric inequalities in mathematical physics , 1951 .

[18]  An Isoperimetric Inequality for Fundamental Tones of Free Plates , 2010, 1004.3318.

[19]  S. Yau Nonlinear Analysis In Geometry , 1986 .

[20]  David L. Webb,et al.  Isospectral plane domains and surfaces via Riemannian orbifolds , 1992 .

[21]  G. Pólya,et al.  ON THE RATIO OF CONSECUTIVE EIGENVALUES , 1956 .

[22]  R. Brooks Constructing isospectral manifolds , 1988 .

[23]  R. Benguria,et al.  Proof of the Payne-Pólya-Weinberger conjecture , 1991 .

[24]  Burgess Davis On the spectral gap for fixed membranes , 2001 .

[25]  On the Cauchy Problem for a Dynamical Euler's Elastica , 2002, math/0202278.

[26]  Optimal Eigenvalues for Some Laplacians and Schrödinger Operators Depending on Curvature , 1999, math-ph/9901022.

[27]  L. M. Chasman Vibrational modes of circular free plates under tension , 2010, 1004.3316.

[28]  Toshikazu Sunada,et al.  Riemannian coverings and isospectral manifolds , 1985 .

[29]  Lower bounds of the gap between the first and second eigenvalues of the Schrödinger operator , 1986 .

[30]  E. Lieb,et al.  Bound for the Kinetic Energy of Fermions Which Proves the Stability of Matter , 1975 .

[31]  C. Borell The Brunn-Minkowski inequality in Gauss space , 1975 .

[32]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[33]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[34]  Steve Zelditch,et al.  Inverse spectral problem for analytic domains, II: ℤ2-symmetric domains , 2009 .

[35]  A sharp bound for the ratio of the first two Dirichlet eigenvalues of a domain in a hemisphere of ⁿ , 2000, math/0008088.

[36]  L. Payne Isoperimetric Inequalities and Their Applications , 1967 .

[37]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[38]  E. Lieb,et al.  Erratum: Bound for the Kinetic Energy of Fermions which Proves the Stability of Matter. (Physical Review Letters) , 1975 .

[39]  James R. Munkres,et al.  Topology; a first course , 1974 .

[40]  J. R. Newman The World of Mathematics , 1961 .

[41]  Giovanni Landi,et al.  Chern–Simons forms on principal superfiber bundles , 1990 .

[42]  R. Benguria,et al.  Isoperimetric Inequalities for Eigenvalues of the Laplacian , 2007 .

[43]  E. Lieb,et al.  Inequalities for the Moments of the Eigenvalues of the Schrodinger Hamiltonian and Their Relation to Sobolev Inequalities , 2002 .

[44]  G. Talenti,et al.  Elliptic equations and rearrangements , 1976 .

[45]  J. Bernstein,et al.  A variational characterization of the catenoid , 2010, 1012.3941.

[46]  M. Ashbaugh The Fundamental Gap , 2006 .

[47]  Mark S. Ashbaugh,et al.  Open Problems on Eigenvalues of the Laplacian , 1999 .

[48]  B. Baumgartner,et al.  The Laplacian of the Potential and the Order of Energy Levels , 1984 .

[49]  Claudio Perez Tamargo Can one hear the shape of a drum , 2008 .

[50]  Mark S. Ashbaugh,et al.  The universal eigenvalue bounds of Payne-Pólya-Weinberger, Hile-Protter, and H C Yang , 2002 .

[51]  E. Lieb,et al.  On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .

[52]  R. Benguria,et al.  Log-concavity of the ground state of Schrödinger operators: A new proof of the Baumgartner-Grosse-Martin inequality , 1988 .

[53]  R. Laugesen,et al.  Fundamental tones and buckling loads of clamped plates , 1996 .

[54]  T. Merkle,et al.  Universal Bounds for Traces of the Dirichlet Laplace Operator , 2009 .

[55]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[56]  E. Krahn,et al.  Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises , 1925 .

[57]  K. Thas,et al.  Hearing shapes of drums — mathematical and physical aspects of isospectrality , 2010, 1101.1239.

[58]  A lower bound for the ground state energy of a Schrodinger operator on a loop , 2005, math-ph/0508023.

[59]  R. Benguria,et al.  A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions , 1992 .

[60]  I. Stakgold,et al.  A Variational Theorem for ∇2u+ λu= 0 and its Application , 1952 .

[61]  Å. Pleijel A study of certain Green's functions with applications in the theory of vibrating membranes , 1954 .

[62]  G. Szegö [53–2] On the Vibrations of a Clamped Plate , 1982 .

[63]  Isoperimetric Inequalities and Eigenvalues of the Laplacian Robert Osserman , 2010 .

[64]  Shing-Tung Yau,et al.  An Estimate of the Gap of the First Two Eigenvalues in the Schr , 2009, 0902.2250.

[65]  G. Szegő,et al.  Inequalities for Certain Eigenvalues of a Membrane of Given Area , 1954 .

[66]  A Second Eigenvalue Bound for the Dirichlet Schrödinger Operator , 2005, math-ph/0511032.

[67]  R. Bañuelos,et al.  Gradient Estimates for the Ground State¶Schrödinger Eigenfunction and Applications , 2001 .

[68]  D. Thompson,et al.  A History of Greek Mathematics , 1922, Nature.

[69]  Alexander Yu. Solynin,et al.  An approach to symmetrization via polarization , 1999 .

[70]  H. Weyl Ramifications, old and new, of the eigenvalue problem , 1950 .

[71]  R. Benguria,et al.  Sharp Upper Bound to the First Nonzero Neumann Eigenvalue for Bounded Domains in Spaces of Constant Curvature , 1995 .

[72]  N. Nadirashvili Rayleigh's conjecture on the principal frequency of the clamped plate , 1995 .

[73]  H. Fédérer Geometric Measure Theory , 1969 .

[74]  M. Kac On Some Connections between Probability Theory and Differential and Integral Equations , 1951 .

[75]  On condensation in the free-boson gas and the spectrum of the Laplacian , 1983 .

[76]  J. Milnor,et al.  EIGENVALUES OF THE LAPLACE OPERATOR ON CERTAIN MANIFOLDS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Ben Andrews,et al.  Proof of the fundamental gap conjecture , 2010, 1006.1686.

[78]  Hans F. Weinberger,et al.  An Isoperimetric Inequality for the N-Dimensional Free Membrane Problem , 1956 .

[79]  Michael Loss,et al.  Stability of Matter , 2005 .

[80]  G. Talenti On the first eigenvalue of the clamped plate , 1981 .

[81]  Antoine Henrot,et al.  Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .

[82]  M. Loss,et al.  On the Laplace Operator Penalized by Mean Curvature , 1998 .

[83]  Hans von Mangoldt Auszug aus einer Arbeit unter dem Titel : Zu Riemann's Abhandlung "Über die Anzahl der Primzahlen unter einer gegebenen Grösse" , 1894 .

[84]  G Szegö,et al.  NOTE TO MY PAPER "ON MEMBRANES AND PLATES". , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[85]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[86]  R. Laugesen,et al.  Inequalities for the first eigenvalues of the clamped plate and buckling problems , 1997 .

[87]  Mark S. Ashbaugh,et al.  Spectral Theory and Geometry: Isoperimetric and universal inequalities for eigenvalues , 1999 .

[88]  W. R. Buckland,et al.  Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. , 1952 .

[89]  J. Dodziuk Eigenvalues of the Laplacian on forms , 1982 .

[90]  Barry Simon,et al.  Analysis of Operators , 1978 .

[91]  E. Davies,et al.  Spectral Theory and Differential Operators: Index , 1995 .

[92]  Helmut Koch,et al.  Über die Anzahl der Primzahlen unter einer gegebenen Größe , 1986 .

[93]  G. Polya,et al.  Isoperimetric Inequalities in Mathematical Physics. (AM-27), Volume 27 , 1951 .

[94]  R. Benguria,et al.  Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrödinger operators with symmetric single-well potentials , 1989 .

[95]  H. McKean,et al.  Curvature and the Eigenvalues of the Laplacian , 1967 .

[96]  C. Bandle Isoperimetric inequalities and applications , 1980 .

[97]  Transplantation Et Isospectralité II , 1993 .

[98]  Kudrolli,et al.  Experiments on not "hearing the shape" of drums. , 1994, Physical review letters.

[99]  G. Szegö On Membranes and Plates. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[100]  E. Harrell,et al.  Differential inequalities for Riesz means and Weyl-type bounds for eigenvalues , 2007, 0705.3673.

[101]  R. Benguria,et al.  A second proof of the Payne-Pólya-Weinberger conjecture , 1992 .

[102]  On an isoperimetric inequality for a Schrödinger operator depending on the curvature of a loop , 2005, math/0505123.

[103]  P. Bérard,et al.  Transplantation et isospectralité. I , 1992 .

[104]  Pedro R. S. Antunes On the buckling eigenvalue problem , 2011 .