Synthesis and characterization of novel triptycene dianhydrides and polyimides of intrinsic microporosity based on 3,3ʹ-dimethylnaphthidine

[1]  H. Cui,et al.  Microporous aromatic polyimides derived from triptycene-based dianhydride , 2016 .

[2]  Huibi Xu,et al.  Triptycene-Based Hyper-Cross-Linked Polymer Sponge for Gas Storage and Water Treatment , 2015 .

[3]  Jun Hu,et al.  Efficient CO2 capture by triptycene-based microporous organic polymer with functionalized modification , 2015 .

[4]  I. Pinnau,et al.  Gas permeation and physical aging properties of iptycene diamine-based microporous polyimides , 2015 .

[5]  I. Pinnau,et al.  Fine-Tuned Intrinsically Ultramicroporous Polymers Redefine the Permeability/Selectivity Upper Bounds of Membrane-Based Air and Hydrogen Separations. , 2015, ACS macro letters.

[6]  M. Ferrari,et al.  Highly Permeable Benzotriptycene-Based Polymer of Intrinsic Microporosity. , 2015, ACS macro letters.

[7]  M. MacLachlan,et al.  Soluble Tetraaminotriptycene Precursors. , 2015, The Journal of organic chemistry.

[8]  Jiaqiang Xu,et al.  A Triptycene‐Based Porous Organic Polymer that Exhibited High Hydrogen and Carbon Dioxide Storage Capacities and Excellent CO2/N2 Selectivity , 2015 .

[9]  I. Pinnau,et al.  Synthesis and Effect of Physical Aging on Gas Transport Properties of a Microporous Polyimide Derived from a Novel Spirobifluorene-Based Dianhydride. , 2015, ACS macro letters.

[10]  I. Pinnau,et al.  Role of Intrachain Rigidity in the Plasticization of Intrinsically Microporous Triptycene-Based Polyimide Membranes in Mixed-Gas CO2/CH4 Separations , 2014 .

[11]  I. Pinnau,et al.  Energy‐Efficient Hydrogen Separation by AB‐Type Ladder‐Polymer Molecular Sieves , 2014, Advanced materials.

[12]  Huibi Xu,et al.  Triptycene-based microporous polyimides: Synthesis and their high selectivity for CO2 capture , 2014 .

[13]  B. Freeman,et al.  Synthesis and characterization of triptycene-based polyimides with tunable high fractional free volume for gas separation membranes , 2014 .

[14]  I. Pinnau,et al.  Rational Design of Intrinsically Ultramicroporous Polyimides Containing Bridgehead-Substituted Triptycene for Highly Selective and Permeable Gas Separation Membranes , 2014 .

[15]  I. Pinnau,et al.  Ultra‐Microporous Triptycene‐based Polyimide Membranes for High‐Performance Gas Separation , 2014, Advanced materials.

[16]  I. Pinnau,et al.  Pure- and mixed-gas CO2/CH4 separation properties of PIM-1 and an amidoxime-functionalized PIM-1 , 2014 .

[17]  Gabriele Clarizia,et al.  Triptycene Induced Enhancement of Membrane Gas Selectivity for Microporous Tröger's Base Polymers , 2014, Advanced materials.

[18]  J. C. Jansen,et al.  A highly permeable polyimide with enhanced selectivity for membrane gas separations , 2014 .

[19]  Huibi Xu,et al.  Synthesis and properties of triptycene-based microporous polymers , 2013 .

[20]  Y. Liu,et al.  Organic microporous polymer from a hexaphenylbenzene based triptycene monomer: synthesis and its gas storage properties , 2013 .

[21]  J. C. Jansen,et al.  Synthesis and gas permeation properties of novel spirobisindane-based polyimides of intrinsic microporosity , 2013 .

[22]  N. Ricardo,et al.  Chitosan-graft-poly(acrylic acid)/rice husk ash based superabsorbent hydrogel composite: preparation and characterization , 2012, Journal of polymer research.

[23]  Bao-hang Han,et al.  Preparation and characterization of triptycene-based microporous poly(benzimidazole) networks , 2012 .

[24]  Buyin Li,et al.  Triptycene-Based Microporous Polymers: Synthesis and Their Gas Storage Properties. , 2012, ACS macro letters.

[25]  T. E. Reich,et al.  High CO2 uptake and selectivity by triptycene-derived benzimidazole-linked polymers. , 2012, Chemical communications.

[26]  H. Park,et al.  High performance polyimide with high internal free volume elements. , 2011, Macromolecular rapid communications.

[27]  Stefanie A. Sydlik,et al.  Triptycene Polyimides: Soluble Polymers with High Thermal Stability and Low Refractive Indices , 2011 .

[28]  K. Harris,et al.  Triptycene-based polymers of intrinsic microporosity: organic materials that can be tailored for gas adsorption , 2010 .

[29]  M. MacLachlan,et al.  Iptycenes in supramolecular and materials chemistry. , 2009, Chemical Society reviews.

[30]  Neil B. McKeown,et al.  Synthesis, Characterization, and Gas Permeation Properties of a Novel Group of Polymers with Intrinsic Microporosity: PIM-Polyimides , 2009 .

[31]  L. Robeson,et al.  The upper bound revisited , 2008 .

[32]  K. Harris,et al.  A triptycene-based polymer of intrinsic microposity that displays enhanced surface area and hydrogen adsorption. , 2007, Chemical communications.

[33]  E. Thomas,et al.  Minimization of Internal Molecular Free Volume: A Mechanism for the Simultaneous Enhancement of Polymer Stiffness, Strength, and Ductility , 2006 .

[34]  Q. Zong,et al.  Novel triptycene-based cylindrical macrotricyclic host: synthesis and complexation with paraquat derivatives. , 2006, Organic letters.

[35]  T. Swager,et al.  Minimization of Free Volume: Alignment of Triptycenes in Liquid Crystals and Stretched Polymers , 2001 .

[36]  M. Hanack,et al.  An Easy Route from Catechols to Phthalonitriles , 1998 .

[37]  Hu Xiaoxia,et al.  水素結合LbLポリ(ビニルピロリドン)/ポリ(アクリル酸)膜に対するメチレンブルーの負荷と放出の制御 , 2012 .