Preliminary analytical results using surface current integration for predicting effects of surface pillows on RF performance

An overview of the fast integral RF evaluation (FIRE) program is presented. This program uses surface current integration to evaluate RF performance of antenna systems. It requires modeling of surfaces in X, Y, Z coordinates along equally spaced X and Y grids with Z in the focal directon. The far field contribution of each surface point includes the effects of the Z-component of surface current which is not included in the aperture integration technique. Because of this, surface current integration is the most effective and inclusive technique for predicting RF performance on non-ideal reflectors. Results obtained from use of the FIRE program and an aperture integration program to predict RF performance of a LSS antenna concept are presented.