On the role of context in hierarchical fuzzy controllers

This article analyzes the role of context in hierarchical fuzzy controllers based on the decomposition of the input space. The usual consideration in most hierarchical fuzzy systems is the reduction of dimensionality problems. This article will analyze how to profit from the qualities of context as a key question in the definition of a fuzzy controller, to reduce the design efforts by making it easier to introduce the expert knowledge in that process. The idea is to use the output of a level of the hierarchy as the method to define (or adjust) the normalization functions (considered as contextual information) applied to the variables of the following level of that hierarchy.

[1]  Jun Zhou,et al.  Hierarchical fuzzy control , 1991 .

[2]  P.J. King,et al.  The application of fuzzy control systems to industrial processes , 1977, Autom..

[3]  T. A. McMahon,et al.  Mechanics of Locomotion , 1984, Muscles, Reflexes, and Locomotion.

[4]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[5]  Ronald R. Yager,et al.  On the construction of hierarchical fuzzy systems models , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[6]  C Kirtley,et al.  Influence of walking speed on gait parameters. , 1985, Journal of biomedical engineering.

[7]  Ümit Özgüner,et al.  Design of knowledge-rich hierarchical controllers for large functional systems , 1990, IEEE Trans. Syst. Man Cybern..

[8]  Edward J. Davison,et al.  Stabilization of unstable and unintuitive plants by fuzzy control , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[9]  Abdollah Homaifar,et al.  The role of "hierarchy" in the design of fuzzy logic controllers , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[10]  Richard S. Sutton,et al.  Neuronlike adaptive elements that can solve difficult learning control problems , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  Luis Magdalena Layos Estudio de la coordinación inteligente en robots bípedos: aplicación de lógica borrosa y algoritmos genéticos , 1994 .

[12]  Si-Zhao Joe Qin,et al.  A multiregion fuzzy logic controller for nonlinear process control , 1994, IEEE Trans. Fuzzy Syst..

[13]  Ronald R. Yager,et al.  On a hierarchical structure for fuzzy modeling and control , 1993, IEEE Trans. Syst. Man Cybern..

[14]  Luis Magdalena,et al.  Adapting the gain of an FLC with genetic algorithms , 1997, Int. J. Approx. Reason..

[15]  Luis Magdalena,et al.  A Fuzzy logic controller with learning through the evolution of its knowledge base , 1997, Int. J. Approx. Reason..

[16]  Ebrahim H. Mamdani,et al.  A linguistic self-organizing process controller , 1979, Autom..

[17]  G. N. Saridis,et al.  Intelligent robotic control , 1983 .

[18]  Ronald R. Yager,et al.  Essentials of fuzzy modeling and control , 1994 .

[19]  Kimon P. Valavanis,et al.  Information-theoretic modeling of intelligent robotic systems , 1988, IEEE Trans. Syst. Man Cybern..