Analysis of contingency tables by ideal point discriminant analysis

Cross-classified data are frequently encountered in behavioral and social science research. The loglinear model and dual scaling (correspondence analysis) are two representative methods of analyzing such data. An alternative method, based on ideal point discriminant analysis (DA), is proposed for analysis of contingency tables, which in a certain sense encompasses the two existing methods. A variety of interesting structures can be imposed on rows and columns of the tables through manipulations of predictor variables and/or as direct constraints on model parameters. This, along with maximum likelihood estimation of the model parameters, allows interesting model comparisons. This is illustrated by the analysis of several data sets.

[1]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[2]  Yoshio Takane,et al.  MAXIMUM LIKELIHOOD ESTIMATION IN THE GENERALIZED CASE OF THURSTONE'S MODEL OF COMPARATIVE JUDGMENT , 1980 .

[3]  R. A. Bradley,et al.  Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons , 1952 .

[4]  Chikio Hayashi,et al.  Sampling design in the social survey of language at the city of Shirakawa , 1950 .

[5]  J. A. Anderson,et al.  7 Logistic discrimination , 1982, Classification, Pattern Recognition and Reduction of Dimensionality.

[6]  Y. Takane,et al.  Ideal point discriminant analysis , 1987 .

[7]  J. Ramsay Confidence regions for multidimensional scaling analysis , 1978 .

[8]  L. Thurstone Theory of attitude measurement. , 1929 .

[9]  New methods for the analysis of two-way contigency tables: An alternative to Diaconis and Efron , 1985 .

[10]  Stephen E. Fienberg,et al.  Discrete Multivariate Analysis: Theory and Practice , 1976 .

[11]  Chikio Hayashi On the prediction of phenomena from qualitative data and the quantification of qualitative data from the mathematico-statistical point of view , 1951 .

[12]  Leo A. Goodman,et al.  Association Models and Canonical Correlation in the Analysis of Cross-Classifications Having Ordered Categories , 1981 .

[13]  Discussion: Testing for Independence in a Two-Way Table: New Interpretations of the Chi-Square Statistic , 1985 .

[14]  西里 静彦,et al.  Analysis of categorical data : dual scaling and its applications , 1980 .

[15]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[16]  Klaus Krippendorff,et al.  Information Theory: Structural Models for Qualitative Data. , 1988 .

[17]  John A. Nevin,et al.  SIGNAL DETECTION THEORY AND OPERANT BEHAVIOR: A Review of David M. Green and John A. Swets' Signal Detection Theory and Psychophysics.1 , 1969 .

[18]  John W. Tukey,et al.  Statistical Methods for Research Workers , 1930, Nature.

[19]  Palmer O. Johnson The Quantification of Qualitative Data in Discriminant Analysis , 1950 .

[20]  C. Coombs A theory of data. , 1965, Psychology Review.

[21]  R. Duncan Luce,et al.  Individual Choice Behavior: A Theoretical Analysis , 1979 .

[22]  A. E. Maxwell Canonical Variate Analysis When the Variables are Dichotomous , 1961 .

[23]  Jan de Leeuw,et al.  Correspondence analysis used complementary to loglinear analysis , 1985 .

[24]  W. Heiser Joint Ordination of Species and Sites: The Unfolding Technique , 1987 .

[25]  B. Efron Double Exponential Families and Their Use in Generalized Linear Regression , 1986 .

[26]  H. van Groenewoud,et al.  A Multivariate Ordering of Vegetation Data Based on Gaussian Type Gradient Response Curves , 1975 .

[27]  B. Jørgensen Exponential Dispersion Models , 1987 .

[28]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .

[29]  R. Fisher THE PRECISION OF DISCRIMINANT FUNCTIONS , 1940 .

[30]  H. Akaike A new look at the statistical model identification , 1974 .

[31]  Erling B. Andersen,et al.  Discrete Statistical Models with Social Science Applications. , 1980 .

[32]  H. Colonius A new interpretation of stochastic test models , 1981 .

[33]  C. Braak Canonical Correspondence Analysis: A New Eigenvector Technique for Multivariate Direct Gradient Analysis , 1986 .

[34]  V. Smith,et al.  Multivariate analysis: Theory and practice , 1974 .

[35]  S. Haberman,et al.  Canonical Analysis of Contingency Tables by Maximum Likelihood , 1986 .

[36]  R. Clarke,et al.  Theory and Applications of Correspondence Analysis , 1985 .

[37]  A. Gardner Methods of Statistics , 1941 .

[38]  Donald B. Rubin,et al.  Comment: Assessing the Fit of Logistic Regressions Using the Implied Discriminant Analysis , 1984 .

[39]  C.J.F. ter Braak,et al.  Partial canonical correspondence analysis , 1988 .

[40]  G. M. Southward,et al.  Analysis of Categorical Data: Dual Scaling and Its Applications , 1981 .

[41]  T. Marill Detection theory and psychophysics , 1956 .

[42]  S. R. Searle Linear Models , 1971 .

[43]  J. Guilford Psychometric methods, 2nd ed. , 1954 .

[44]  R. Snee Graphical Display of Two-way Contingency Tables , 1974 .

[45]  Henri Caussinus,et al.  Contribution à l'analyse statistique des tableaux de corrélation , 1965 .

[46]  David W. Strauss Choice by features: An extension of Luce's choice model to account for similarities , 1981 .

[47]  Joseph L. Zinnes,et al.  Theory and Methods of Scaling. , 1958 .

[48]  M. Aldenderfer,et al.  Cluster Analysis. Sage University Paper Series On Quantitative Applications in the Social Sciences 07-044 , 1984 .

[49]  D. Pregibon,et al.  Graphical Methods for Assessing Logistic Regression Models , 1984 .

[50]  R. Luce,et al.  Individual Choice Behavior: A Theoretical Analysis. , 1960 .

[51]  Leo A. Goodman,et al.  Some Useful Extensions of the Usual Correspondence Analysis Approach and the Usual Log-Linear Models Approach in the Analysis of Contingency Tables , 1986 .

[52]  D. Pregibon Logistic Regression Diagnostics , 1981 .

[53]  W. J. McGill Multivariate information transmission , 1954, Trans. IRE Prof. Group Inf. Theory.