SEARCH FOR DARK MATTER ANNIHILATION SIGNALS FROM THE FORNAX GALAXY CLUSTER WITH H.E.S.S.

The Fornax galaxy cluster was observed with the High Energy Stereoscopic System (H.E.S.S.) for a total live time of 14.5 hours, searching for very-high-energy (VHE, E>100 GeV) gamma-rays from dark matter (DM) annihilation. No significant signal was found in searches for point-like and extended emissions. Using several models of the DM density distribution, upper limits on the DM velocity-weighted annihilation cross-section as a function of the DM particle mass are derived. Constraints are derived for different DM particle models, such as those arising from Kaluza-Klein and supersymmetric models. Various annihilation final states are considered. Possible enhancements of the DM annihilation gamma-ray flux, due to DM substructures of the DM host halo, or from the Sommerfeld effect, are studied. Additional gamma-ray contributions from internal bremsstrahlung and inverse Compton radiation are also discussed. For a DM particle mass of 1 TeV, the exclusion limits at 95% of confidence level reach values of ~ 10^-23cm^3s^-1, depending on the DM particle model and halo properties. Additional contribution from DM substructures can improve the upper limits on by more than two orders of magnitude. At masses around 4.5 TeV, the enhancement by substructures and the Sommerfeld resonance effect results in a velocity-weighted annihilation cross-section upper limit at the level of ~ 10^-26cm^3s^-1.

U. Schwanke | C. Boisson | H. Sol | A. Bochow | A. C. Clapson | K. Egberts | D. Nekrassov | M. Panter | A. G. Akhperjanian | T. Kneiske | T. Lohse | I. Sushch | J. F. Glicenstein | P. M. Chadwick | H. J. Dickinson | S. J. Nolan | S. M. Rayner | C. B. Rulten | G. Fontaine | M. Naumann-Godo | G. Coignet | A. Fiasson | R. Kossakowski | J. Masbou | S. Rosier-Lees | J. P. Vialle | P. Espigat | R. Terrier | L. Fallon | B. Behera | M. Hauser | S. Schwemmer | C. Farnier | F. Feinstein | Y. A. Gallant | G. Vasileiadis | F. Stinzing | G. Pelletier | A. Hoffmann | A. Jacholkowska | D. Nedbal | D. Gerbig | J. Ruppel | M. Ostrowski | L. Stawarz | J. Dyks | J. A. Hinton | J. L. Skilton | M. Dyrda | J. Ripken | G. Dubus | HESS Collaboration A. Abramowski | F. Acero | F. Aharonian | G. Anton | A. Balzer | A. Barnacka | U. Barres de Almeida | Y. Becherini | J. Becker | K. Bernlohr | E. Birsin | J. Biteau | J. Bolmont | P. Bordas | J. Brucker | F. Brun | P. Brun | T. Bulik | I. Busching | S. Carrigan | S. Casanova | M. Cerruti | A. Charbonnier | R.C.G. Chaves | A. Cheesebrough | G. Cologna | J. Conrad | M. Dalton | M. K. Daniel | I. D. Davids | B. Degrange | C. Deil | A. Djannati-Atai | W. Domainko | L.O'C. Drury | K. Dutson | P. Eger | S. Fegan | M. V. Fernandes | A. Forster | M. Fussling | H. Gast | L. G'erard | B. Giebels | B. Gluck | P. Goret | D. Goring | S. Haffner | J. D. Hague | D. Hampf | S. Heinz | G. Heinzelmann | G. Henri | G. Hermann | W. Hofmann | P. Hofverberg | M. Holler | D. Horns | O. C. de Jager | C. Jahn | M. Jamrozy | I. Jung | M. A. Kastendieck | K. Katarzy'nski | U. Katz | S. Kaufmann | D. Keogh | D. Khangulyan | B. Kh'elifi | D. Klochkov | W. Klu'zniak | Nu. Komin | K. Kosack | H. Laffon | G. Lamanna | D. Lennarz | A. Lopatin | C.-C. Lu | V. Marandon | A. Marcowith | D. Maurin | N. Maxted | M. Mayer | T.J.L. McComb | M. C. Medina | J. M'ehault | R. Moderski | E. Moulin | C. L. Naumann | M. de Naurois | N. Nguyen | B. Nicholas | J. Niemiec | S. Ohm | E. de Ona Wilhelmi | B. Opitz | I. Oya | M. Paz Arribas | G. Pedaletti1 | P.-O. Petrucci | S. Pita | G. Puhlhofer | M. Punch | A. Quirrenbach | M. Raue | A. Reimer | O. Reimer | M. Renaud | R. de los Reyes | F. Rieger | L. Rob | G. Rowell | B. Rudak | V. Sahakian | D. A. Sanchez | A. Santangelo | R. Schlickeiser | F. M. Schock | A. Schulz | S. Schwarzburg | F. Sheidaei | G. Spengler | R. Steenkamp | C. Stegmann | K. Stycz | A. Szostek | J.-P. Tavernet | M. Tluczykont | K. Valerius | C. van Eldik | C. Venter | A. Viana | P. Vincent | H. J. Volk | F. Volpe | S. Vorobiov | M. Vorster | S. J. Wagner | M. Ward | R. White | A. Wierzcholska | M. Zacharias | A. Zajczyk | A. A. Zdziarski | A. Zech | H.-S. Zechlin | Nicolas Produit | T. Bulik | G. Anton | U. Katz | E. Moulin | T. Lohse | T. Mccomb | W. Domainko | C. Deil | S. Rosier-Lees | A. Quirrenbach | A. Lopatin | C. Venter | M. Raue | S. Ohm | C. Stegmann | I. Davids | W. Hofmann | M. Hauser | G. Fontaine | N. Maxted | R. Schlickeiser | B. Degrange | F. Aharonian | D. Horns | D. Lennarz | Y. Gallant | S. Fegan | K. Kosack | Y. Becherini | F. Feinstein | P. Goret | M. Naumann-Godo | C. Naumann | A. Santangelo | L. Drury | S. Wagner | J. Ruppel | C. Farnier | K. Valerius | D. Khangulyan | L. Stawarz | H. Dickinson | J. Ripken | B. Opitz | M. Ward | J. Tavernet | M. Panter | A. Barnacka | B. Behera | E. Birsin | J. Biteau | C. Boisson | J. Bolmont | P. Bordas | P. Brun | S. Casanova | M. Cerruti | M. Daniel | M. Naurois | G. Dubus | J. Dyks | M. Dyrda | K. Egberts | P. Eger | A. Fiasson | B. Giebels | J. Glicenstein | G. Henri | G. Hermann | P. Hofverberg | A. Jacholkowska | M. Jamrozy | I. Jung | N. Komin | R. Kossakowski | G. Lamanna | A. Marcowith | R. Moderski | D. Nedbal | J. Niemiec | S. Nolan | M. Ostrowski | I. Oya | P. Petrucci | S. Pita | M. Punch | O. Reimer | M. Renaud | F. Rieger | L. Rob | B. Rudak | C. Rulten | V. Sahakian | U. Schwanke | S. Schwarzburg | S. Schwemmer | H. Sol | R. Steenkamp | F. Stinzing | A. Szóstek | R. Terrier | M. Tluczykont | C. Eldik | G. Vasileiadis | J. Vialle | A. Viana | P. Vincent | S. Vorobiov | A. Wierzcholska | M. Zacharias | A. Zajczyk | A. Zdziarski | A. Zech | H. Volk | D. Gerbig | B. Kh'elifi | G. Rowell | G. Puhlhofer | F. Brun | R. Chaves | A. Djannati-Atai | H. Laffon | V. Marandon | F. Sheidaei | P. Chadwick | I. Sushch | S. Kaufmann | K. Bernlohr | M. Fussling | J. Hinton | M. Holler | M. Kastendieck | K. Katarzy'nski | W. Klu'zniak | E. Wilhelmi | F. Acero | S. Heinz | B. Nicholas | R. Reyes | A. Akhperjanian | A. Bochow | J. Brucker | A. Charbonnier | A. Cheesebrough | A. Clapson | M. Dalton | P. Espigat | G. Heinzelmann | A. Hoffmann | C. Jahn | D. Keogh | D. Klochkov | T. Kneiske | J. Masbou | D. Maurin | D. Nekrassov | G. Pelletier | S. Rayner | J. Skilton | F. Volpe | M. Mayer | S. Carrigan | L. Fallon | J. Hague | D. Hampf | H. Gast | H. Zechlin | O. D. Jager | A. Balzer | G. Cologna | K. Dutson | A. Forster | G. Spengler | K. Stycz | I. Busching | C. Lu | H. C. A. Abramowski | S. Haffner | J. M'ehault | M. Vorster | D. Goring | N. Nguyen | U. D. Almeida | J. Becker | L. G'erard | B. Gluck | F. Schock | G. Pedaletti1 | A. Reimer | J. Conrad | D. Sanchez | A. Schulz | R. White | M. Arribas | C.-C. Lu | R. White | S. Wagner

[1]  W. J. Blok,et al.  The Core-Cusp Problem , 2009, 0910.3538.

[2]  R. Guenette,et al.  Observation of Gamma-Ray Emission from the Galaxy M87 above 250 GeV with VERITAS , 2008, 0802.1951.

[3]  John F Beacom,et al.  Upper bound on the dark matter total annihilation cross section. , 2007, Physical review letters.

[4]  Gerard A. Luppino,et al.  The SBF Survey of Galaxy Distances. IV. SBF Magnitudes, Colors, and Distances , 2000, astro-ph/0011223.

[5]  Mathieu de Naurois,et al.  A high performance likelihood reconstruction of γ-rays for imaging atmospheric Cherenkov telescopes , 2009, 0907.2610.

[6]  Douglas P. Finkbeiner,et al.  A theory of dark matter , 2008, 0810.0713.

[7]  Garching,et al.  The dark matter halo of NGC 1399 - CDM or MOND? , , 2007, 0711.4077.

[8]  J. W. Watts,et al.  An excess of cosmic ray electrons at energies of 300–800 GeV , 2008, Nature.

[9]  J. Tonry,et al.  The ACS Virgo Cluster Survey. XIII. SBF Distance Catalog and the Three-dimensional Structure of the Virgo Cluster , 2007, astro-ph/0702510.

[10]  Jesse Thaler,et al.  Dark Matter through the Axion Portal , 2008, 0810.5397.

[11]  G. Voit Tracing cosmic evolution with clusters of galaxies , 2004, astro-ph/0410173.

[12]  Michael Kuhlen,et al.  Early Supersymmetric Cold Dark Matter Substructure , 2006 .

[13]  T. Ensslin,et al.  Simulating cosmic rays in clusters of galaxies – II. A unified scheme for radio haloes and relics with predictions of the γ-ray emission , 2007, 0707.1707.

[14]  Ti-Pei Li,et al.  Analysis methods for results in gamma-ray astronomy , 1983 .

[15]  Jo Bovy,et al.  Substructure boosts to dark matter annihilation from Sommerfeld enhancement , 2009, 0903.0413.

[16]  Lisa Randall,et al.  Wino cold dark matter from anomaly mediated SUSY breaking , 2000 .

[17]  H. Böhringer,et al.  The Mass Function of an X-Ray Flux-limited Sample of Galaxy Clusters , 1999, astro-ph/0111285.

[18]  M. Kamionkowski,et al.  Unitarity limits on the mass and radius of dark-matter particles. , 1990, Physical review letters.

[19]  Lars Bergström,et al.  Non-baryonic dark matter: observational evidence and detection methods , 2000 .

[20]  F. Massaro,et al.  FERMI LARGE AREA TELESCOPE GAMMA-RAY DETECTION OF THE RADIO GALAXY M87 , 2009, 0910.3565.

[21]  M. Paolillo,et al.  Deep ROSAT HRI Observations of the NGC 1399/NGC 1404 Region: Morphology and Structure of the X-Ray Halo , 2001, astro-ph/0109342.

[22]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[23]  Toshiyuki Fukushige,et al.  On the Origin of Cusps in Dark Matter Halos , 1996, astro-ph/9610005.

[24]  John F. Beacom,et al.  Conservative Constraints on dark matter annihilation into gamma rays , 2008, 0803.0157.

[25]  Fabrizio Brighenti,et al.  The X-Ray Concentration-Virial Mass Relation , 2006, astro-ph/0610135.

[26]  Astrophysics,et al.  Clusters of galaxies and the diffuse gamma-ray background , 1998, astro-ph/9804262.

[27]  R. Cousins,et al.  A Unified Approach to the Classical Statistical Analysis of Small Signals , 1997, physics/9711021.

[28]  Stefano Profumo TeV γ-rays and the largest masses and annihilation cross sections of neutralino dark matter , 2005 .

[29]  P. Giommi,et al.  Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV , 2010 .

[30]  A. R. Bazer-Bachi,et al.  Fast Variability of Tera–Electron Volt γ Rays from the Radio Galaxy M87 , 2006, Science.

[31]  Kyoungchul Kong,et al.  Kaluza-Klein Dark Matter: Direct Detection vis-a-vis LHC (2013 update) , 2008, 1307.6581.

[32]  G. Lake,et al.  Resolving the Structure of Cold Dark Matter Halos , 1997, astro-ph/9709051.

[33]  U. Schwanke,et al.  H.E.S.S. OBSERVATIONS OF THE GLOBULAR CLUSTERS NGC 6388 AND M15 AND SEARCH FOR A DARK MATTER SIGNAL , 2011, 1104.2548.

[34]  G. C. Barbarino,et al.  Observation of an anomalous positron abundance in the cosmic radiation , 2008, 0810.4995.

[35]  James Binney,et al.  Galactic Dynamics: Second Edition , 2008 .

[36]  C. Pfrommer,et al.  Simulating the γ-ray emission from galaxy clusters: a universal cosmic ray spectrum and spatial distribution , 2010, 1001.5023.

[37]  for the H.E.S.S. Collaboration , 2003 .

[38]  G. C. Barbarino,et al.  An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV , 2009, Nature.

[39]  Gino Tosti,et al.  Constraints on dark matter annihilation in clusters of galaxies with the Fermi large area telescope , 2010 .

[40]  Michael Gustafsson,et al.  Gamma rays from heavy neutralino dark matter. , 2005, Physical review letters.

[41]  S. Gabici,et al.  Gamma rays from clusters of galaxies , 2007, astro-ph/0701545.

[42]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[43]  Lars Bergström,et al.  Gamma rays from dark matter annihilations strongly constrain the substructure in halos. , 2009, Physical review letters.

[44]  Lars Bergstrom,et al.  Prospects of detecting gamma-ray emission from galaxy clusters : Cosmic rays and dark matter annihilations , 2011, 1105.3240.

[45]  Gianfranco Bertone,et al.  Implications of High-Resolution Simulations on Indirect Dark Matter Searches , 2009, 0908.0195.

[46]  Lars Bergstrom,et al.  New gamma-ray contributions to supersymmetric dark matter annihilation , 2007, 0710.3169.

[47]  Mario Kadastik,et al.  PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection , 2010, 1012.4515.

[48]  G. Pedaletti,et al.  VERY HIGH ENERGY γ-RAY EMISSION FROM PASSIVE SUPERMASSIVE BLACK HOLES: CONSTRAINTS FOR NGC 1399 , 2011, 1107.0910.

[49]  Torsten Bringmann,et al.  Particle models and the small-scale structure of dark matter , 2009, 0903.0189.

[50]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.

[51]  Astrophysics,et al.  Substructure and Dynamics of the Fornax Cluster , 2000 .

[52]  H. Krawczynski,et al.  The optical system of the H.E.S.S. imaging atmospheric Cherenkov telescopes. Part I: layout and components of the system , 2003, astro-ph/0308246.

[53]  J. Stadel,et al.  Clumps and streams in the local dark matter distribution , 2008, Nature.

[54]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[55]  A. Quirrenbach,et al.  H.E.S.S. constraints on dark matter annihilations towards the sculptor and carina dwarf galaxies , 2010, 1012.5602.

[56]  S. McGaugh,et al.  Testing the Dark Matter Hypothesis with Low Surface Brightness Galaxies and Other Evidence , 1998, astro-ph/9801123.

[57]  T. Jeltema,et al.  Gamma rays from clusters and groups of galaxies: Cosmic rays versus dark matter , 2008, 0812.0597.

[58]  F. A. Aharonian,et al.  The nonthermal energy content and gamma ray emission of starburst galaxies and clusters of galaxies , 1994 .

[59]  Lars Bergström,et al.  Dark matter interpretation of recent electron and positron data. , 2009, Physical review letters.

[60]  G. P. Rowell,et al.  A new template background estimate for source searching in TeV gamma-ray astronomy , 2003, astro-ph/0310025.

[61]  S. Colafrancesco,et al.  Multi-frequency analysis of neutralino dark matter annihilations in the Coma cluster , 2005 .

[62]  J. M. Paredes,et al.  DETECTION OF VERY HIGH ENERGY γ-RAY EMISSION FROM THE PERSEUS CLUSTER HEAD–TAIL GALAXY IC 310 BY THE MAGIC TELESCOPES , 2010 .

[63]  K. Griest,et al.  Supersymmetric dark matter , 1992 .

[64]  Geraldine Servant,et al.  Is the Lightest Kaluza-Klein Particle a Viable Dark Matter Candidate? , 2003 .

[65]  W. Hofmann,et al.  Teraelectronvolt Astronomy , 2010, 1006.5210.

[66]  Mario Kadastik,et al.  Model-independent implications of the e , p cosmic ray spectra on properties of Dark Matter , 2008, 0809.2409.

[67]  Isaac Shlosman,et al.  Dark Halos: The Flattening of the Density Cusp by Dynamical Friction , 2001, astro-ph/0103386.

[68]  J Korea,et al.  Cosmological Shock Waves and Their Role in the Large-Scale Structure of the Universe , 2003, astro-ph/0305164.

[69]  Joseph Silk,et al.  Constraining the dark matter annihilation cross-section with Cherenkov telescope observations of dwarf galaxies , 2009, 0902.4330.

[70]  Shigeki Matsumoto,et al.  Explosive dark matter annihilation. , 2003, Physical review letters.

[71]  M. Moles,et al.  MAGIC GAMMA-RAY TELESCOPE OBSERVATION OF THE PERSEUS CLUSTER OF GALAXIES: IMPLICATIONS FOR COSMIC RAYS, DARK MATTER, AND NGC 1275 , 2009, 0909.3267.

[72]  Joseph Silk,et al.  Can the WIMP annihilation boost factor be boosted by the Sommerfeld enhancement , 2008, 0812.0360.

[73]  Torsten Bringmann,et al.  On the Relevance of Sharp Gamma-Ray Features for Indirect Dark Matter Searches , 2011, 1106.1874.