Contextual Modulation in Primary Visual Cortex

We studied extra-receptive field contextual modulation in area V1 of awake, behaving macaque monkeys. Contextual modulation was studied using texture displays in which texture covering the receptive field (RF) was the same in all trials, but the perceptual context of this texture could vary depending on the configuration of extra-RF texture elements. We found robust contextual modulation when disparity, color, luminance, and orientation cues variously defined a textured figure centered on the RF of V1 neurons. We found contextual modulation to have a spatial extent of ∼8 to 10° diameter parafoveally. Contextual modulation correlated with perceptual experience of both binocularly rivalrous texture displays and of displays with a simple example of surface occlusion. We found contextual modulation in V1 to have a characteristic latency of 80–100 msec after stimulus onset, potentially allowing feedback from extrastriate areas to underlie to this effect.

[1]  D. Robinson,et al.  A METHOD OF MEASURING EYE MOVEMENT USING A SCLERAL SEARCH COIL IN A MAGNETIC FIELD. , 1963, IEEE transactions on bio-medical engineering.

[2]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[3]  E. W. Bough Stereoscopic Vision in the Macaque Monkey: a Behavioural Demonstration , 1970, Nature.

[4]  P. O. Bishop,et al.  Spatial vision. , 1971, Annual review of psychology.

[5]  S. Zeki,et al.  Colour coding in rhesus monkey prestriate cortex. , 1973, Brain research.

[6]  A. Cowey,et al.  Global Stereopsis in Rhesus Monkeys , 1975, The Quarterly journal of experimental psychology.

[7]  R. F. Sarmiento The stereoacuity of macaque monkey , 1975, Vision Research.

[8]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial frequency. , 1976, Journal of neurophysiology.

[9]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. , 1976, Journal of neurophysiology.

[10]  L. Maffei,et al.  The unresponsive regions of visual cortical receptive fields , 1976, Vision Research.

[11]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance. , 1976, Journal of neurophysiology.

[12]  J. Nelson,et al.  Orientation-selective inhibition from beyond the classic visual receptive field , 1978, Brain Research.

[13]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[14]  G. Kanizsa,et al.  Organization in Vision: Essays on Gestalt Perception , 1979 .

[15]  E. Yund,et al.  Responses of striate cortex cells to grating and checkerboard patterns. , 1979, The Journal of physiology.

[16]  B. Julesz,et al.  Evoked potentials to dynamic random-dot correlograms in monkey and man: A test for cyclopean perception , 1981, Vision Research.

[17]  R. L. Valois,et al.  The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.

[18]  Christopher W. Tyler,et al.  Sensory processing of binocular disparity , 1983 .

[19]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[20]  John H. R. Maunsell,et al.  Physiological Evidence for Two Visual Subsystems , 1987 .

[21]  DH Hubel,et al.  Psychophysical evidence for separate channels for the perception of form, color, movement, and depth , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  J. Lund,et al.  Anatomical organization of macaque monkey striate visual cortex. , 1988, Annual review of neuroscience.

[23]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[24]  R. von der Heydt,et al.  Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  T. Wiesel,et al.  Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  K Nakayama,et al.  Stereoscopic Depth: Its Relation to Image Segmentation, Grouping, and the Recognition of Occluded Objects , 1989, Perception.

[27]  T. Wiesel,et al.  The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat , 1990, Vision Research.

[28]  R. Desimone,et al.  Spectral properties of V4 neurons in the macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  P. Lennie,et al.  Chromatic mechanisms in striate cortex of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  Gregory C. DeAngelis,et al.  Depth is encoded in the visual cortex by a specialized receptive field structure , 1991, Nature.

[31]  T. Wiesel,et al.  Targets of horizontal connections in macaque primary visual cortex , 1991, The Journal of comparative neurology.

[32]  D. V. van Essen,et al.  Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. , 1992, Journal of neurophysiology.

[33]  John H. R. Maunsell,et al.  Visual response latencies in striate cortex of the macaque monkey. , 1992, Journal of neurophysiology.

[34]  D. G. Albrecht,et al.  Cortical neurons: Isolation of contrast gain control , 1992, Vision Research.

[35]  T D Albright,et al.  Form-cue invariant motion processing in primate visual cortex. , 1992, Science.

[36]  K Nakayama,et al.  Experiencing and perceiving visual surfaces. , 1992, Science.

[37]  E. Adelson Perceptual organization and the judgment of brightness. , 1993, Science.

[38]  R. Desimone,et al.  Activity of neurons in anterior inferior temporal cortex during a short- term memory task , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  S. Thorpe,et al.  Dynamics of orientation coding in area V1 of the awake primate , 1993, Visual Neuroscience.

[40]  P. H. Schiller,et al.  The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey , 1993, Visual Neuroscience.

[41]  B. Julesz,et al.  Perceptual sensitivity maps within globally defined visual shapes , 1994, Nature.

[42]  Jochen Braun,et al.  Blindsight in normal observers , 1995, Nature.

[43]  Ronald S. Harwerth,et al.  Behavioral studies of local stereopsis and disparity vergence in monkeys , 1995, Vision Research.

[44]  H. Jones,et al.  Visual cortical mechanisms detecting focal orientation discontinuities , 1995, Nature.

[45]  A. Burkhalter,et al.  Patterns of synaptic activity in forward and feedback pathways within rat visual cortex. , 1995, Journal of neurophysiology.

[46]  Ronald A. Rensink,et al.  Preemption effects in visual search: evidence for low-level grouping. , 1995, Psychological review.

[47]  Victor A. F. Lamme The neurophysiology of figure-ground segregation in primary visual cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  B. Julesz,et al.  A THEORETICAL ANALYSIS OF ILLUSORY CONTOUR FORMATION IN STEREOPSIS , 1995 .

[49]  G. Orban,et al.  Processing of kinetically defined boundaries in the cortical motion area MT of the macaque monkey. , 1995, Journal of neurophysiology.

[50]  C. Gilbert,et al.  Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys , 1995, Neuron.

[51]  N. Logothetis,et al.  Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry , 1996, Nature.

[52]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .