Effects of higher-order multipoles of the lunar disturbing potential on elongated orbits in cislunar space

[1]  P. Gurfil,et al.  Semi-analytical model for third-body perturbations including the inclination and eccentricity of the perturbing body , 2019, Celestial Mechanics and Dynamical Astronomy.

[2]  G. Voyatzis,et al.  Dynamical cartography of Earth satellite orbits , 2019, Advances in Space Research.

[3]  Aaron J. Rosengren,et al.  Non-averaged regularized formulations as an alternative to semi-analytical orbit propagation methods , 2018, Celestial Mechanics and Dynamical Astronomy.

[4]  J. San-Juan,et al.  HEOSAT: a mean elements orbit propagator program for highly elliptical orbits , 2018, 1808.05462.

[5]  V. Sidorenko The eccentric Kozai–Lidov effect as a resonance phenomenon , 2017, Celestial Mechanics and Dynamical Astronomy.

[6]  I. Shevchenko The Lidov-Kozai Effect - Applications in Exoplanet Research and Dynamical Astronomy , 2016 .

[7]  S. Naoz The Eccentric Kozai-Lidov Effect and Its Applications , 2016, 1601.07175.

[8]  S. Dong,et al.  Double-averaging can fail to characterize the long-term evolution of Lidov–Kozai Cycles and derivation of an analytical correction , 2016, 1601.04345.

[9]  G. Pucacco,et al.  Analytical development of the lunisolar disturbing function and the critical inclination secular resonance , 2015, 1511.03567.

[10]  H. Perets,et al.  Secular dynamics of hierarchical quadruple systems: the case of a triple system orbited by a fourth body , 2014, 1412.3115.

[11]  A. Loeb,et al.  ECCENTRICITY GROWTH AND ORBIT FLIP IN NEAR-COPLANAR HIERARCHICAL THREE-BODY SYSTEMS , 2013, 1310.6044.

[12]  S. Tremaine,et al.  Why do Earth satellites stay up , 2013, 1309.5244.

[13]  R. Mardling New developments for modern celestial mechanics – I. General coplanar three-body systems. Application to exoplanets , 2013, 1308.0607.

[14]  Paul J. Cefola,et al.  On the third-body perturbations of high-altitude orbits , 2012 .

[15]  J. Laskar,et al.  Tidal evolution of hierarchical and inclined systems , 2011, 1107.0736.

[16]  S. Naoz,et al.  THE ECCENTRIC KOZAI MECHANISM FOR A TEST PARTICLE , 2011, 1106.3329.

[17]  S. Dong,et al.  Long-term cycling of Kozai-Lidov cycles: extreme eccentricities and inclinations excited by a distant eccentric perturber. , 2011, Physical review letters.

[18]  Will M. Farr,et al.  Hot Jupiters from secular planet–planet interactions , 2010, Nature.

[19]  S. Peale,et al.  Secular Evolution of Hierarchical Planetary Systems , 2002, astro-ph/0304454.

[20]  E. Ford,et al.  Secular Evolution of Hierarchical Triple Star Systems , 1999, astro-ph/9905348.

[21]  M. Lane On analytic modeling of lunar perturbations of artificial satellites of the earth , 1989 .

[22]  G. Giacaglia Lunar perturbations of artificial satellites of the earth , 1973 .

[23]  G. E. Cook,et al.  Lifetimes of satellites in large-eccentricity orbits , 1967 .

[24]  H. G. Walter,et al.  Conversion of osculating orbital elements into mean elements , 1967 .

[25]  G. E. Cook,et al.  The long-period motion of the plane of a distant circular orbit , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[26]  M. L. Lidov The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies , 1962 .

[27]  R. R. Allan Satellite orbit perturbations due to radiation pressure and luni-solar forces , 1962 .

[28]  W. M. Kaula Development of the lunar and solar disturbing functions for a close satellite , 1962 .

[29]  P. Musen On the long‐period lunar and solar effects on the motion of an artificial satellite: 2. , 1961 .

[30]  G. E. Cook Luni-Solar Perturbations of the Orbit of an Earth Satellite , 1961 .

[31]  P. Musen,et al.  Lunar and Solar Perturbations on Satellite Orbits , 1959, Science.

[32]  L. Blitzer Lunar-Solar Perturbations of an Earth Satellite , 1959 .

[33]  Dirk Brouwer,et al.  SOLUTION OF THE PROBLEM OF ARTIFICIAL SATELLITE THEORY WITHOUT DRAG , 1959 .

[34]  D. Scheeres Orbital motion in strongly perturbed environments , 2012 .

[35]  D. Scheeres Orbital motion in strongly perturbed environments : applications to asteroid, comet and planetary satellite orbiters , 2012 .

[36]  Alessandro Morbidelli,et al.  Modern celestial mechanics : aspects of solar system dynamics , 2002 .