Accurate solution of polynomial equations using Macaulay resultant matrices

We propose an algorithm for solving two polynomial equations in two variables. Our algorithm is based on the Macaulay resultant approach combined with new techniques, including randomization, to make the algorithm accurate in the presence of roundoff error. The ultimate computation is the solution of a generalized eigenvalue problem via the QZ method. We analyze the error due to roundoff of the method, showing that with high probability the roots are computed accurately, assuming that the input data (that is, the two polynomials) are well conditioned. Our analysis requires a novel combination of algebraic and numerical techniques.

[1]  Stephen A. Vavasis,et al.  Solving Polynomials with Small Leading Coefficients , 2005, SIAM J. Matrix Anal. Appl..

[2]  Dinesh Manocha,et al.  Algorithms for intersecting parametric and algebraic curves I: simple intersections , 1994, TOGS.

[3]  A. Edelman,et al.  Polynomial roots from companion matrix eigenvalues , 1995 .

[4]  Scott A. Mitchell,et al.  Quality Mesh Generation in Higher Dimensions , 2000, SIAM J. Comput..

[5]  Victor Y. Pan,et al.  Multivariate Polynomials, Duality, and Structured Matrices , 2000, J. Complex..

[6]  B. Mourrain,et al.  Resultant over the residual of a complete intersection , 2001 .

[7]  Dinesh Manocha,et al.  Solving algebraic systems using matrix computations , 1996, SIGS.

[8]  G. Stewart Perturbation Theory for the Generalized Eigenvalue Problem , 1978 .

[9]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[10]  Teresa Krick,et al.  Sharp estimates for the arithmetic Nullstellensatz , 1999, math/9911094.

[11]  Robert M. Corless,et al.  A reordered Schur factorization method for zero-dimensional polynomial systems with multiple roots , 1997, ISSAC.

[12]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[13]  Tien Yien Li,et al.  Numerical solution of multivariate polynomial systems by homotopy continuation methods , 1997, Acta Numerica.

[14]  F. S. Macaulay,et al.  The Algebraic Theory of Modular Systems , 1972 .

[15]  Ming Gu,et al.  Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..

[16]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[17]  P. Dooren,et al.  The eigenstructure of an arbitrary polynomial matrix : Computational aspects , 1983 .

[18]  F. S. Macaulay Some Formulæ in Elimination , 1902 .

[19]  Sosonkina Maria,et al.  HOMPACK90: A Suite of FORTRAN 90 Codes for Globally Convergent Homotopy Algorithms , 1996 .

[20]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[21]  H. Stetter,et al.  An Elimination Algorithm for the Computation of All Zeros of a System of Multivariate Polynomial Equations , 1988 .

[22]  J. Ben Rosen,et al.  Total Least Norm Formulation and Solution for Structured Problems , 1996, SIAM J. Matrix Anal. Appl..

[23]  Masha Sosonkina,et al.  Algorithm 777: HOMPACK90: a suite of Fortran 90 codes for globally convergent homotopy algorithms , 1997, TOMS.

[24]  Bernard Mourrain,et al.  Matrices in Elimination Theory , 1999, J. Symb. Comput..

[25]  L. Trefethen,et al.  Pseudozeros of polynomials and pseudospectra of companion matrices , 1994 .