Nearly single-crystalline GaN light-emitting diodes on amorphous glass substrates

Researchers use a pre-orienting layer to achieve nearly single-crystalline GaN pyramidal arrays on amorphous glass substrates. The polycrystalline morphology can be controlled by placing a hole-patterned SiO2 layer on the low-temperature GaN nucleation layer. Light-emitting diodes fabricated by this technique exhibited a luminance of 600 cd m−2.

[1]  Christopher R. Bowen,et al.  Variations in mechanisms of selective area growth of GaN on nano-patterned substrates by MOVPE , 2010 .

[2]  M. Scheffler,et al.  Converged properties of clean metal surfaces by all-electron first-principles calculations , 2006 .

[3]  V. Consonni,et al.  Nucleation mechanisms of epitaxial GaN nanowires: Origin of their self-induced formation and initial radius , 2010 .

[4]  Jonathan J. Wierer,et al.  III -nitride photonic-crystal light-emitting diodes with high extraction efficiency , 2009 .

[5]  E. Fred Schubert,et al.  Light-Emitting Diodes , 2003 .

[6]  S. Aloni,et al.  Complete composition tunability of InGaN nanowires using a combinatorial approach. , 2007, Nature materials.

[7]  P. Michler,et al.  High wavelength tunability of InGaN quantum wells grown on semipolar GaN pyramid facets , 2011 .

[8]  Young Joon Hong,et al.  GaN/In1-xGaxN/GaN/ZnO nanoarchitecture light emitting diode microarrays , 2009 .

[9]  P. Holloway,et al.  Room-temperature photoluminescence and electroluminescence properties of sputter-grown gallium nitride doped with europium , 2004 .

[10]  H. Asahi,et al.  Strong photoluminescence emission from GaN grown on amorphous silica substrates by gas source MBE , 1998 .

[11]  K. Hiramatsu,et al.  Fabrication of GaN Hexagonal Pyramids on Dot-Patterned GaN/Sapphire Substrates via Selective Metalorganic Vapor Phase Epitaxy , 1995 .

[12]  L. Sugiura,et al.  Dislocation motion in GaN light-emitting devices and its effect on device lifetime , 1997 .

[13]  Michael R. Krames,et al.  Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200A∕cm2 , 2007 .

[14]  S. Gwo,et al.  InGaN/GaN nanorod array white light-emitting diode , 2010 .

[15]  S. Nakamura,et al.  Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes , 1994 .

[16]  Hiroto Sekiguchi,et al.  Ti-mask Selective-Area Growth of GaN by RF-Plasma-Assisted Molecular-Beam Epitaxy for Fabricating Regularly Arranged InGaN/GaN Nanocolumns , 2008 .

[17]  K. Hiramatsu,et al.  Blue emission from InGaN/GaN hexagonal pyramid structures , 2007 .

[18]  Kazumasa Hiramatsu,et al.  Defect structure in selective area growth GaN pyramid on (111)Si substrate , 2000 .

[19]  R. Colby,et al.  III-nitride nanopyramid light emitt ing diodes grown by organometallic vapor phase epitaxy , 2010 .

[20]  P. Bhattacharya,et al.  Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. , 2010, Nano letters.

[21]  C. Burrus,et al.  Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect , 1984 .

[22]  Ruey-Chi Wang,et al.  The influence of mask area ratio on GaN regrowth by epitaxial lateral overgrowth , 2008 .

[23]  A. Uedono,et al.  Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors , 2006, Nature materials.

[24]  M. Kneissl,et al.  Polycrystalline nitride semiconductor light-emitting diodes fabricated on quartz substrates , 2000 .

[25]  Z. Matysina The relative surface energy of hexagonal close-packed crystals , 1999 .

[26]  Takashi Mukai,et al.  Hole Compensation Mechanism of P-Type GaN Films , 1992 .

[27]  M. Hanke,et al.  Nucleation mechanisms of self-induced GaN nanowires grown on an amorphous interlayer , 2011 .

[28]  A. Pundt,et al.  Hydrogen behavior in nanocrystalline titanium thin films , 2010 .

[29]  Takashi Mukai,et al.  Improvement of Luminous Efficiency in White Light Emitting Diodes by Reducing a Forward-bias Voltage , 2007 .

[30]  Shuji Nakamura,et al.  In Situ Monitoring of GaN Growth Using Interference Effects , 1991 .

[31]  Paul S. Martin,et al.  High performance thin-film flip-chip InGaN–GaN light-emitting diodes , 2006 .

[32]  Philippe Roussel Markets and technology needs for UHB-LEDs , 2007, Manufacturing LEDs for Lighting and Display.

[33]  T. Wunderer,et al.  Three‐dimensional GaN for semipolar light emitters , 2011 .

[34]  S. Hersee,et al.  The controlled growth of GaN nanowires. , 2006, Nano letters.