Multifunctional carbon dots with high quantum yield for imaging and gene delivery

[1]  Bai Yang,et al.  Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. , 2013, Angewandte Chemie.

[2]  Xuwei Chen,et al.  The production of pH-sensitive photoluminescent carbon nanoparticles by the carbonization of polyethylenimine and their use for bioimaging , 2013 .

[3]  Zhenhui Kang,et al.  Carbon nanodots: synthesis, properties and applications , 2012 .

[4]  Bai Yang,et al.  A general route to make non-conjugated linear polymers luminescent. , 2012, Chemical communications.

[5]  Cai‐Feng Wang,et al.  Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. , 2012, Angewandte Chemie.

[6]  Y. Hsiao,et al.  Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release , 2012 .

[7]  Wei Wang,et al.  Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. , 2012, Biomaterials.

[8]  Xiaoling Yang,et al.  Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. , 2012, Chemical communications.

[9]  Yi Lin,et al.  Electrochemical Tuning of Luminescent Carbon Nanodots: From Preparation to Luminescence Mechanism , 2011, Advanced materials.

[10]  Gert Storm,et al.  Endosomal escape pathways for delivery of biologicals. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[11]  Sheila N. Baker,et al.  Luminescent carbon nanodots: emergent nanolights. , 2010, Angewandte Chemie.

[12]  Minghong Wu,et al.  Hydrothermal Route for Cutting Graphene Sheets into Blue‐Luminescent Graphene Quantum Dots , 2010, Advanced materials.

[13]  Chun-Wei Chen,et al.  Blue photoluminescence from chemically derived graphene oxide. , 2010, Advanced materials.

[14]  Fan Yang,et al.  Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. , 2009, Chemical communications.

[15]  E. J. Mele,et al.  Photoluminescence and band gap modulation in graphene oxide , 2009 .

[16]  C. Mao,et al.  Fluorescent carbon nanoparticles derived from candle soot. , 2007, Angewandte Chemie.

[17]  R. Li,et al.  An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). , 2007, Journal of the American Chemical Society.

[18]  Ya‐Ping Sun,et al.  Quantum-sized carbon dots for bright and colorful photoluminescence. , 2006, Journal of the American Chemical Society.

[19]  C. Balasubramanian,et al.  Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes. , 2006, The journal of physical chemistry. B.

[20]  A. Göpferich,et al.  Polyethylenimine-based non-viral gene delivery systems. , 2005, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[21]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[22]  Latha A. Gearheart,et al.  Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. , 2004, Journal of the American Chemical Society.

[23]  A. Mikos,et al.  Poly(ethylenimine) and its role in gene delivery. , 1999, Journal of controlled release : official journal of the Controlled Release Society.

[24]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .