Carbon molecules in space: from astrochemistry to astrobiology.

How complex carbonaceous molecules in space are, what their abundance is and on what timescales they form are crucial questions within cosmochemistry. Despite the large heterogeneity of galactic and interstellar regions the organic chemistry in the universe seems to follow common pathways. The largest fraction of carbon in the universe is incorporated into aromatic molecules (gaseous polycyclic aromatic hydrocarbon as well as solid macromolecular aromatic structures). Macromolecular carbon constitutes more than half of the interstellar carbon, approximately 80% of the carbon in meteorites, and is likely to be present in comets. Molecules of high astrobiological relevance such as N-heterocycles, amino acids and pre-sugars have all been identified in trace quantities (ppb) in extracts of carbonaceous meteorites. Their presence in inter- and circumstellar regions is either unknown or contentious. In any event such fragile species are easily destroyed by UV radiation, shocks and thermal processing and are unlikely to survive incorporation into Solar System material without some degradation. The more refractory material, in particular macromolecular carbon may retain an interstellar heritage more faithfully. We present laboratory measurements on the photostability of organic compounds and discuss their survival in regions with elevated UV radiation. We also show recent observations of diffuse interstellar bands indicating the presence of fullerenes. We investigate the link between the carbon chemistry in interstellar space and in the Solar System by analyzing the carbonaceous fraction of meteorites and by reviewing stable isotopic data. It also seems evident that both volatile and refractory material from carbonaceous meteoritic has been substantially altered owing to thermal and aqueous processing within the Solar System.

[1]  Steen Rasmussen,et al.  Experimentally tracing the key steps in the origin of life: The aromatic world. , 2006, Astrobiology.

[2]  C. Bréchignac,et al.  Photoinduced products from cold coronene clusters. A route to hydrocarbonated nanograins , 2005 .

[3]  H. Kaneda,et al.  Detection of PAH Emission Features from Nearby Elliptical Galaxies with the Spitzer Infrared Spectrograph , 2005 .

[4]  P. Ehrenfreund,et al.  A quantitative study of proton irradiation and UV photolysis of benzene in interstellar environments , 2005 .

[5]  Bernard H. Foing,et al.  Amino acid photostability on the Martian surface , 2005 .

[6]  K. Nomoto,et al.  The First Chemical Enrichment in the Universe and the Formation of Hyper Metal-Poor Stars , 2005, Science.

[7]  J. Surace,et al.  Accepted for Publication in the Astrophysical Journal Spitzer Detection of PAH and Silicate Dust Features in the Mid-Infrared Spectra of z ∼ 2 Ultraluminous Infrared Galaxies , 2005 .

[8]  P. Ehrenfreund,et al.  Formation and photostability of N-heterocycles in space. I. The effect of nitrogen on the photostability of small aromatic molecules , 2005 .

[9]  B. Foing,et al.  PAH charge state distribution and DIB carriers: Implications from the line of sight toward HD 147889 , , 2005 .

[10]  E. Dartois,et al.  Ultraviolet photoproduction of ISM dust Laboratory characterisation and astrophysical relevance , 2005 .

[11]  G. Cody,et al.  NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups , 2005 .

[12]  D. Heymann,et al.  C60 and Giant Fullerenes in Soot Condensed in Vapors with Variable C/H2 Ratio , 2004 .

[13]  J. Silk,et al.  The Polytropic Equation of State of Primordial Gas Clouds , 2004, astro-ph/0412403.

[14]  E. Peeters,et al.  Polycyclic Aromatic Hydrocarbons as a Tracer of Star Formation? , 2004 .

[15]  J. Sollerman,et al.  Diffuse Interstellar Bands in NGC 1448 , 2004, astro-ph/0409340.

[16]  Sun Kwok,et al.  The synthesis of organic and inorganic compounds in evolved stars , 2004, Nature.

[17]  E. Peeters,et al.  PAHs as a tracer of star formation , 2004, astro-ph/0406183.

[18]  J. Silk,et al.  Cosmic Star Formation, Reionization, and Constraints on Global Chemical Evolution , 2004, astro-ph/0405355.

[19]  C. Snape,et al.  Hydropyrolysis of insoluble carbonaceous matter in the Murchison meteorite , 2004 .

[20]  G. Flynn,et al.  The origin of organic matter in the solar system: Evidence from the interplanetary dust particles , 2003 .

[21]  K. Gordon,et al.  Small Magellanic Cloud-Type Interstellar Dust in the Milky Way , 2003 .

[22]  K. Nomoto,et al.  Submitted to the Astrophysical Journal on July 13, 2003 Variations in the Abundance Pattern of Extremely Metal-poor Stars and Nucleosynthesis in Population III Supernovae , 2003 .

[23]  P. Ehrenfreund,et al.  The Astrobiology of Nucleobases , 2003 .

[24]  K. M. Menten,et al.  High-excitation CO in a quasar host galaxy at z = 6.42 , 2003, astro-ph/0307408.

[25]  M. Moore,et al.  Photodestruction of Relevant Interstellar Molecules in Ice Mixtures , 2003 .

[26]  Ian Wright,et al.  Investigating the variations in carbon and nitrogen isotopes in carbonaceous chondrites , 2003 .

[27]  A. Tielens,et al.  Detection of strongly processed ice in the central starburst of NGC 4945 , 2003, astro-ph/0302568.

[28]  F. Cataldo,et al.  He+ ION BOMBARDMENT OF C60 FULLERENE: AN FT-IR AND RAMAN STUDY , 2002 .

[29]  J. Blank,et al.  Astrophysical and astrochemical insights into the origin of life , 2002 .

[30]  M. Sephton,et al.  Organic compounds in carbonaceous meteorites. , 2002, Natural product reports.

[31]  George D. Cody,et al.  Solid-state ( 1 H and 13 C) nuclear magnetic resonance spectroscopy of insoluble organic residue in the Murchison meteorite: a self-consistent quantitative analysis , 2002 .

[32]  R. Ogasawara,et al.  Dipeptides and Diketopiperazines in the Yamato-791198 and Murchison Carbonaceous Chondrites , 2002, Origins of life and evolution of the biosphere.

[33]  A. Brack,et al.  Amino acids from ultraviolet irradiation of interstellar ice analogues , 2002, Nature.

[34]  Scott A. Sandford,et al.  Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues , 2002, Nature.

[35]  D P Glavin,et al.  Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of CI type carbonaceous chondrites , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[36]  C. Pillinger,et al.  Normal alkanes in meteorites: molecular δ13C values indicate an origin by terrestrial contamination , 2001 .

[37]  Ana Heras,et al.  Infrared Space Observatory's Discovery of C4H2, C6H2, and Benzene in CRL 618 , 2001 .

[38]  S. Derenne,et al.  Solid state CP/MAS 13 C NMR of the insoluble organic matter of the Orgueil and Murchison meteorites: quantitative study , 2000 .

[39]  B. Foing,et al.  On the identification of the C+60 interstellar features , 2000 .

[40]  Pascale Ehrenfreund,et al.  A voyage from dark clouds to the early Earth , 2000 .

[41]  J. M. Hollis,et al.  Interstellar Glycolaldehyde: The First Sugar , 2000 .

[42]  O. Guillois,et al.  Diamond Infrared Emission Bands in Circumstellar Media , 1999 .

[43]  S. Sandford,et al.  Modeling the Unidentified Infrared Emission with Combinations of Polycyclic Aromatic Hydrocarbons , 1999, The Astrophysical journal.

[44]  Farid Salama,et al.  Carbon in the universe. , 1998, Science.

[45]  L. Colangeli,et al.  A New Approach to the Puzzle of the Ultraviolet Interstellar Extinction Bump , 1998 .

[46]  F. Boulanger,et al.  THE SHAPE OF THE UNIDENTIFIED INFRA-RED BANDS : ANALYTICAL FIT TO ISOCAM SPECTRA , 1998 .

[47]  Mark A. Sephton,et al.  δ13C of free and macromolecular aromatic structures in the murchison meteorite , 1998 .

[48]  J. Greenberg Making a comet nucleus , 1998 .

[49]  T. Prusti,et al.  Infrared Spectroscopy of Dust in the Diffuse Interstellar Medium toward Cygnus OB2 No. 12 , 1997 .

[50]  W. Duley,et al.  Polycyclic Aromatic Hydrocarbons and Fullerenes as Decomposition Products of Hydrogenated Amorphous Carbon , 1997 .

[51]  L. Becker,et al.  Fullerenes, fulleranes and polycyclic aromatic hydrocarbons in the Allende meteorite , 1997, Meteoritics & planetary science.

[52]  P. Cassen,et al.  Thermal Processing of Interstellar Dust Grains in the Primitive Solar Environment , 1997 .

[53]  S. Pizzarello,et al.  Isotopic analyses of nitrogenous compounds from the Murchison meteorite: ammonia, amines, amino acids, and polar hydrocarbons. , 1994, Geochimica et cosmochimica acta.

[54]  B. Foing,et al.  Detection of two interstellar absorption bands coincident with spectral features of C60+ , 1994, Nature.

[55]  T. Bunch,et al.  Fullerenes in an impact crater on the LDEF spacecraft , 1994, Nature.

[56]  R N Zare,et al.  Identification of Complex Aromatic Molecules in Individual Interplanetary Dust Particles , 1993, Science.

[57]  A. Tielens,et al.  Polycyclic aromatic hydrocarbon formation in carbon-rich stellar envelopes , 1992 .

[58]  S. Pizzarello,et al.  Isotopic and molecular analyses of hydrocarbons and monocarboxylic acids of the Murchison meteorite. , 1992, Geochimica et cosmochimica acta.

[59]  S. Pizzarello,et al.  Aliphatic hydrocarbons of the Murchison meteorite. , 1990, Geochimica et cosmochimica acta.

[60]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[61]  E. Feigelson,et al.  Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes , 1989 .

[62]  J. Nuth Meteoritic evidence that graphite is rare in the interstellar medium , 1985, Nature.

[63]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[64]  N. Blair,et al.  Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite , 1984, Nature.

[65]  S. Prasad,et al.  UV radiation field inside dense clouds: its possible existence and chemical implications , 1983 .

[66]  E. Anders,et al.  Origin of Organic Matter in Early Solar System-V , 1972 .

[67]  E. Anders,et al.  Carbon Isotope Fractionation in the Fischer-Tropsch Synthesis and in Meteorites , 1970, Science.

[68]  I. Kaplan,et al.  Endogenous Carbon in Carbonaceous Meteorites , 1970, Science.

[69]  I. Kaplan,et al.  Light hydrocarbon gases, C13, and origin of organic matter in carbonaceous chondrites , 1970 .

[70]  R. J. Olson,et al.  Organic compounds in meteorites—II Aromatic hydrocarbons , 1967 .

[71]  John M. Hayes,et al.  Organic constituents of meteorites - A review. , 1967 .

[72]  Gerhard Kminek,et al.  Relative Amino Acid Concentrations as a Signature for Parent Body Processes of Carbonaceous Chondrites , 2004, Origins of life and evolution of the biosphere.

[73]  J. Bada,et al.  Extraterrestrial Organic Compounds in Meteorites , 2002 .

[74]  Y. Pendleton,et al.  The Organic Refractory Material in the Diffuse Interstellar Medium: Mid-Infrared Spectroscopic Constraints , 2002 .

[75]  C. T. Pillinger,et al.  Aromatic moieties in meteoritic macromolecular materials: analyses by hydrous pyrolysis and δ13C of individual compounds , 2000 .

[76]  P. Ehrenfreund,et al.  Spectroscopic properties of polycyclic aromatic hydrocarbons (PAHs) and astrophysical implications. , 1997, Advances in space research : the official journal of the Committee on Space Research.

[77]  George H. Herbig,et al.  The Diffuse Interstellar Bands , 1995 .

[78]  F. Robert,et al.  The concentration and isotopic composition of hydrogen, carbon and nitrogen in carbonaceous meteorites☆ , 1982 .