Decoupling and recoupling of detonation waves associated with sudden expansion

Detonation propagation behavior associated with sudden expansions has been investigated both experimentally and numerically. Different mechanisms, from sustained propagation to detonation failure and reinitiation including shock and flame front decoupling and recoupling have been observed with the schlieren technique. The shock-induced flame propagation has been modeled with two-step chemistry and structured two-dimensional CFD on arbitrary geometries. The results of the numerical simulations show good correspondence to the variety of phenomena observed in experiments. Thus the numerical simulation can be used to study detonation propagation in complex geometries. It provides a tool for the design of safety devices and aids experimental investigations.