Magnetocaloric effect, cyclability and coefficient of refrigerant performance in the MnFe(P, Si, B) system

MnFeP0.595Si0.33B0.075 has recently been presented as a top class magnetocaloric material combining a large magnetocaloric entropy change, a large temperature change, limited thermal hysteresis, and an enhanced mechanical stability. By providing practical rules to control the transition temperature in the MnFe(P,Si,B) system, we demonstrate that this new material was not a single composition and that a giant magnetocaloric effect (MCE) can be observed over a broad temperature range, a point of great interest for applications. As important prerequisite is the cyclability of the MCE. The thermal hysteresis and the recovery of the MCE during field oscillations have been addressed for MnFe(P,Si,B) materials. It is found that when the thermal hysteresis becomes about as large as the field induced shift of the transition, the MCE becomes partially irreversible and a strong decrease in the cyclic temperature change occurs. For an intermediate field change, typically 1 T, the limit for thermal hysteresis is about...

[1]  A. A. Coelho,et al.  The isothermal variation of the entropy (ΔST) may be miscalculated from magnetization isotherms in some cases: MnAs and Gd5Ge2Si2 compounds as examples , 2011 .

[2]  I. S. Oliveira,et al.  Anomalous magnetocaloric effect in YbAs associated with the giant quadrupolar interaction , 2000 .

[3]  M. Farle,et al.  Hysteresis effects in the inverse magnetocaloric effect in martensitic Ni-Mn-In and Ni-Mn-Sn , 2012 .

[4]  S. Russek,et al.  The performance of a large-scale rotary magnetic refrigerator , 2014 .

[5]  V. Khovaylo,et al.  Hysteresis and magnetocaloric effect at the magnetostructural phase transition of Ni-Mn-Ga and Ni-Mn-Co-Sn Heusler alloys , 2012 .

[6]  V. Amaral,et al.  Prediction of realistic entropy behavior from mixed state magnetization data for first order phase transition materials , 2010 .

[7]  O. Gutfleisch,et al.  Influence of thermal hysteresis and field cycling on the magnetocaloric effect in LaFe11.6Si1.4 , 2013 .

[8]  P. Egolf,et al.  Thermodynamics of magnetic refrigeration , 2006 .

[9]  T. Takagi,et al.  Peculiarities of the magnetocaloric properties in Ni-Mn-Sn ferromagnetic shape memory alloys , 2010 .

[10]  K. Engelbrecht,et al.  Experimental investigation of the effect of thermal hysteresis in first order material MnFe(P,As) applied in an AMR device , 2014 .

[11]  S. Fujieda,et al.  Itinerant-electron Metamagnetic Transition and Large Magnetocaloric Effects in La(FexSi1-x)13 Compounds and Their Hydrides , 2003 .

[12]  C. Rillo,et al.  Magnetic phase diagram of the (Fe1−xMnx)2P system , 1990 .

[13]  M. Avdeev,et al.  High/low-moment phase transition in hexagonal Mn-Fe-P-Si compounds , 2012 .

[14]  K. K. Nielsen,et al.  Material properties and modeling characteristics for MnFeP1−xAsx materials for application in magnetic refrigeration , 2013 .

[15]  F. Ohuchi,et al.  Hysteresis of the martensitic phase transition in magnetocaloric-effect Ni-Mn-Sn alloys , 2009 .

[16]  H. Wada,et al.  Magnetocaloric properties and magnetic refrigerant capacity of MnFeP1−xSix , 2013 .

[17]  L. Cohen,et al.  History dependence of directly observed magnetocaloric effects in (Mn, Fe)As , 2012, 1206.2540.

[18]  F. Hu,et al.  Large magnetic entropy change in a Heusler alloy Ni 52.6 Mn 23.1 Ga 24.3 single crystal , 2001 .

[19]  N. van Dijk,et al.  Direct measurement of the magnetocaloric effect in MnFe(P,X)(X = As, Ge, Si) materials , 2014 .

[20]  E. Brück,et al.  Direct magnetocaloric characterization and simulation of thermomagnetic cycles. , 2013, The Review of scientific instruments.

[21]  R. Burriel,et al.  Entropy determinations and magnetocaloric parameters in systems with first-order transitions: Study of MnAs , 2009 .

[22]  F. Hu,et al.  Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 , 2001 .

[23]  Oliver Gutfleisch,et al.  Giant magnetocaloric effect driven by structural transitions. , 2012, Nature materials.

[24]  Carlo Paolo Sasso,et al.  Effect of material hysteresis in magnetic refrigeration cycles , 2006 .

[25]  M. E. Wood,et al.  General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity , 1985 .

[26]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[27]  Xavier Moya,et al.  Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys , 2005, Nature materials.

[28]  A. Tishin,et al.  The Magnetocaloric Effect and its Applications , 2003 .

[29]  N. Trung,et al.  Tunable thermal hysteresis in MnFe(P,Ge) compounds , 2009 .

[30]  K. Ishida,et al.  Magnetic-field-induced shape recovery by reverse phase transformation , 2006, Nature.

[31]  M. Acet,et al.  Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[32]  E. Bruck,et al.  From first-order magneto-elastic to magneto-structural transition in (Mn,Fe)1.95P0.50Si0.50 compounds , 2011, 1203.0555.

[33]  N. van Dijk,et al.  Taming the First‐Order Transition in Giant Magnetocaloric Materials , 2014, Advanced materials.

[34]  Kaspar Kirstein Nielsen,et al.  Materials Challenges for High Performance Magnetocaloric Refrigeration Devices , 2012 .

[35]  Jitendra Kumar,et al.  On the derivation of the magnetocaloric properties in ferrimagnetic spinel Mn3O4 , 2010, 1012.5161.

[36]  F. Albertini,et al.  Convergence of direct and indirect methods in the magnetocaloric study of first order transformations: The case of Ni-Co-Mn-Ga Heusler alloys , 2012 .

[37]  H. Wada,et al.  Giant magnetocaloric effect of MnAs1−xSbx , 2001 .

[38]  N. Trung,et al.  Structure, magnetism, and magnetocaloric properties of MnFeP1−xSix compounds , 2008 .

[39]  C. Sasso,et al.  A Peltier cells differential calorimeter with kinetic correction for the measurement of cp(H,T) and Δs(H,T) of magnetocaloric materials. , 2010, The Review of scientific instruments.

[40]  G. D. de Wijs,et al.  Mixed Magnetism for Refrigeration and Energy Conversion , 2011, 1203.0556.