A strongly convergent primal–dual method for nonoverlapping domain decomposition

We propose a primal–dual parallel proximal splitting method for solving domain decomposition problems for partial differential equations. The problem is formulated via minimization of energy functions on the subdomains with coupling constraints which model various properties of the solution at the interfaces. The proposed method can handle a wide range of linear and nonlinear problems, with flexible, possibly nonlinear, transmission conditions across the interfaces. Strong convergence in the energy spaces is established in this general setting, and without any additional assumption on the energy functions or the geometry of the problem. Several examples are presented.

[1]  Jinchao Xu,et al.  Domain Decomposition Methods in Science and Engineering XX , 2013, Lecture Notes in Computational Science and Engineering.

[2]  Ivan P. Gavrilyuk,et al.  Variational analysis in Sobolev and BV spaces , 2007, Math. Comput..

[3]  Carola-Bibiane Schönlieb,et al.  Subspace Correction Methods for Total Variation and 1-Minimization , 2007, SIAM J. Numer. Anal..

[4]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[5]  Hédy Attouch,et al.  Variational inequalities with varying obstacles: The general form of the limit problem , 1983 .

[6]  John W. Barrett,et al.  A further remark on the regularity of the solutions of the p -Laplacian and its applications to their finite element approximations , 1993 .

[7]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[8]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[9]  Olivier Pironneau,et al.  Non-overlapping domain decomposition for evolution operators , 2000 .

[10]  P. L. Combettes,et al.  Primal-Dual Splitting Algorithm for Solving Inclusions with Mixtures of Composite, Lipschitzian, and Parallel-Sum Type Monotone Operators , 2011, Set-Valued and Variational Analysis.

[11]  T. Chan,et al.  Domain decomposition algorithms , 1994, Acta Numerica.

[12]  Haim Brezis,et al.  Monotonicity Methods in Hilbert Spaces and Some Applications to Nonlinear Partial Differential Equations , 1971 .

[13]  Giorgio C. Buttazzo,et al.  Variational Analysis in Sobolev and BV Spaces - Applications to PDEs and Optimization, Second Edition , 2014, MPS-SIAM series on optimization.

[14]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[15]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[16]  L. Badea,et al.  Convergence Rate of a Schwarz Multilevel Method for the Constrained Minimization of Nonquadratic Functionals , 2006, SIAM J. Numer. Anal..

[17]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[18]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[19]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[20]  Martin J. Gander,et al.  Domain Decomposition Methods in Science and Engineering XVIII , 2009 .

[21]  Patrick L. Combettes,et al.  Best Approximation from the Kuhn-Tucker Set of Composite Monotone Inclusions , 2014, 1401.8005.

[22]  Necas Jindrich Les Méthodes directes en théorie des équations elliptiques , 2017 .

[23]  H. Attouch,et al.  Alternating proximal algorithms for linearly constrained variational inequalities: Application to do , 2011 .

[24]  Gary M. Lieberman,et al.  Boundary regularity for solutions of degenerate elliptic equations , 1988 .

[25]  J. Bolte,et al.  Alternating Proximal Algorithms for Weakly Coupled Minimization Problems. Applications to Dynamical Games and PDE’s , 2008 .

[26]  Bang Công Vu,et al.  A splitting algorithm for dual monotone inclusions involving cocoercive operators , 2011, Advances in Computational Mathematics.

[27]  P. Tolksdorf,et al.  Regularity for a more general class of quasilinear elliptic equations , 1984 .

[28]  P. Tallec Domain decomposition methods in computational mechanics , 1994 .

[29]  Patrick L. Combettes,et al.  Systems of Structured Monotone Inclusions: Duality, Algorithms, and Applications , 2012, SIAM J. Optim..

[30]  R. Temam,et al.  Analyse convexe et problèmes variationnels , 1974 .

[31]  Radu Ioan Bot,et al.  A Douglas-Rachford Type Primal-Dual Method for Solving Inclusions with Mixtures of Composite and Parallel-Sum Type Monotone Operators , 2012, SIAM J. Optim..

[32]  Laurent Condat,et al.  A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms , 2012, Journal of Optimization Theory and Applications.

[33]  A. Damlamian,et al.  Application des méthodes de convexité et monotonie a l'étude de certaines équations quasi linéaires , 1977, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[34]  J. Moreau Fonctions convexes duales et points proximaux dans un espace hilbertien , 1962 .

[35]  Patrick L. Combettes,et al.  A Monotone+Skew Splitting Model for Composite Monotone Inclusions in Duality , 2010, SIAM J. Optim..

[36]  Pavel Drábek,et al.  Methods of Nonlinear Analysis: Applications to Differential Equations , 2007 .

[37]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[38]  Patrick L. Combettes,et al.  Strong Convergence of Block-Iterative Outer Approximation Methods for Convex Optimization , 2000, SIAM J. Control. Optim..

[39]  Carola-Bibiane Schönlieb,et al.  A convergent overlapping domain decomposition method for total variation minimization , 2009, Numerische Mathematik.

[40]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[41]  I. Gavrilyuk Book Review: Variational analysis in Sobolev and BV spaces , 2007 .

[42]  H. B. Veiga,et al.  On the global regularity for nonlinear systems of the p-Laplacian type , 2010, 1008.3262.