Spacing memetic algorithms

We introduce the Spacing Memetic Algorithm (SMA), a formal evolutionary model devoted to a systematic control of spacing (distances) among individuals. SMA uses search space distance information to decide what individuals are acceptable in the population, what individuals need to be replaced and when to apply mutations. By ensuring a "healthy" spacing (and thus diversity), SMA substantially reduces the risk of premature convergence and helps the search process to continuously discover new high-quality search areas. Generally speaking, the number of distance calculations represents a limited computational overhead compared to the number of local search iterations. Most existing memetic algorithms can be "upgraded" to a spacing memetic algorithm, provided that a suitable distance measure can be specified. The impact of the main SMA components is assessed within several case studies on different problems.

[1]  Kenneth Sörensen,et al.  MA mid PM: memetic algorithms with population management , 2006, Comput. Oper. Res..

[2]  Graham Kendall,et al.  Diversity in genetic programming: an analysis of measures and correlation with fitness , 2004, IEEE Transactions on Evolutionary Computation.

[3]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[4]  Alan S. Perelson,et al.  Searching for Diverse, Cooperative Populations with Genetic Algorithms , 1993, Evolutionary Computation.

[5]  F. Glover,et al.  Analyzing and Modeling the Maximum Diversity Problem by Zero‐One Programming* , 1993 .

[6]  Michael J. Shaw,et al.  Genetic algorithms with dynamic niche sharing for multimodal function optimization , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[7]  Dan Gusfield,et al.  Partition-distance: A problem and class of perfect graphs arising in clustering , 2002, Inf. Process. Lett..

[8]  Jin-Kao Hao,et al.  An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph coloring , 2010, Comput. Oper. Res..

[9]  Jin-Kao Hao,et al.  A search space "cartography" for guiding graph coloring heuristics , 2010, Comput. Oper. Res..

[10]  V. Rao Vemuri,et al.  Analysis of Speciation and Niching in the Multi-Niche Crowding GA , 1999, Theor. Comput. Sci..

[11]  Alain Hertz,et al.  Embedding a sequential procedure within an evolutionary algorithm for coloring problems in graphs , 1995, J. Heuristics.

[12]  Rasmus K. Ursem,et al.  Diversity-Guided Evolutionary Algorithms , 2002, PPSN.

[13]  Larry J. Eshelman,et al.  The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in Nontraditional Genetic Recombination , 1990, FOGA.

[14]  Charles Fleurent,et al.  Genetic and hybrid algorithms for graph coloring , 1996, Ann. Oper. Res..

[15]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[16]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[17]  Pablo Moscato,et al.  Memetic algorithms: a short introduction , 1999 .

[18]  David S. Johnson,et al.  Cliques, Coloring, and Satisfiability , 1996 .

[19]  Thomas Stützle,et al.  Iterated local search for the quadratic assignment problem , 2006, Eur. J. Oper. Res..

[20]  K. Sörensen,et al.  Memetic algorithms with population management , 2006 .

[21]  M. Trick,et al.  Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993 , 1996 .

[22]  Paolo Toth,et al.  A Metaheuristic Approach for the Vertex Coloring Problem , 2008, INFORMS J. Comput..

[23]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[24]  F. Glover,et al.  Fundamentals of Scatter Search and Path Relinking , 2000 .

[25]  S. Kauffman,et al.  Towards a general theory of adaptive walks on rugged landscapes. , 1987, Journal of theoretical biology.

[26]  Bernd Freisleben,et al.  A genetic local search algorithm for solving symmetric and asymmetric traveling salesman problems , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.