ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): Detection of Extremely High-density Compact Structure of Prestellar Cores and Multiple Substructures Within

Prestellar cores are self-gravitating dense and cold structures within molecular clouds where future stars are born. They are expected, at the stage of transitioning to the protostellar phase, to harbor centrally concentrated dense (sub)structures that will seed the formation of a new star or the binary/multiple stellar systems. Characterizing this critical stage of evolution is key to our understanding of star formation. In this work, we report the detection of high-density (sub)structures on the thousand-astronomical-unit (au) scale in a sample of dense prestellar cores. Through our recent ALMA observations toward the Orion Planck Galactic Cold Clumps, we have found five extremely dense prestellar cores, which have centrally concentrated regions of ∼2000 au in size, and several 107 cm−3 in average density. Masses of these centrally dense regions are in the range of 0.30 to 6.89 M⊙. For the first time, our higher resolution observations (0.8″ ∼ 320 au) further reveal that one of the cores shows clear signatures of fragmentation; such individual substructures/fragments have sizes of 800–1700 au, masses of 0.08 to 0.84 M⊙, densities of 2 − 8 × 107 cm−3, and separations of ∼1200 au. The substructures are massive enough (≳0.1 M⊙) to form young stellar objects and are likely examples of the earliest stage of stellar embryos that can lead to widely (∼1200 au) separated multiple systems.

[1]  M. Juvela,et al.  ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP). II. Survey Overview: A First Look at 1.3 mm Continuum Maps and Molecular Outflows , 2020, The Astrophysical Journal Supplement Series.

[2]  L. V. Tóth,et al.  Molecular Cloud Cores with a High Deuterium Fraction: Nobeyama Single-pointing Survey , 2020, The Astrophysical Journal Supplement Series.

[3]  M. Juvela,et al.  ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP). I. Detection of New Hot Corinos with the ACA , 2020, The Astrophysical Journal.

[4]  M. Juvela,et al.  ALMA ACA and Nobeyama Observations of Two Orion Cores in Deuterated Molecular Lines , 2020, The Astrophysical Journal.

[5]  Z.-Y. Li,et al.  Detection of Irregular, Submillimeter Opaque Structures in the Orion Molecular Clouds: Protostars within 10,000 yr of Formation? , 2020, The Astrophysical Journal.

[6]  J. Pineda,et al.  The Central 1000 au of a Pre-stellar Core Revealed with ALMA. I. 1.3 mm Continuum Observations , 2019, The Astrophysical Journal.

[7]  L. V. Tóth,et al.  Planck Cold Clumps in the λ Orionis Complex. II. Environmental Effects on Core Formation , 2018, The Astrophysical Journal Supplement Series.

[8]  E. Feigelson,et al.  The APOGEE-2 Survey of the Orion Star-forming Complex. II. Six-dimensional Structure , 2018, The Astronomical Journal.

[9]  N. Sakai,et al.  Gravitationally Unstable Condensations Revealed by ALMA in the TUKH122 Prestellar Core in the Orion A Cloud , 2018, 1803.03340.

[10]  A. Fuente,et al.  Thermal Jeans Fragmentation within ∼1000 au in OMC-1S , 2017, The Astrophysical journal.

[11]  J. Pineda,et al.  ALMA Observations of Starless Core Substructure in Ophiuchus , 2017, 1703.00506.

[12]  Zhi-Yun Li,et al.  A triple protostar system formed via fragmentation of a gravitationally unstable disk , 2016, Nature.

[13]  J. Pineda,et al.  AN ALMA SEARCH FOR SUBSTRUCTURE, FRAGMENTATION, AND HIDDEN PROTOSTARS IN STARLESS CORES IN CHAMAELEON I , 2016, 1604.04027.

[14]  J. Pineda,et al.  THE JCMT GOULD BELT SURVEY: DENSE CORE CLUSTERS IN ORION B , 2016, 1602.00707.

[15]  A. Goodman,et al.  The formation of a quadruple star system with wide separation , 2015, Nature.

[16]  J. Pineda,et al.  REVEALING H2D+ DEPLETION AND COMPACT STRUCTURE IN STARLESS AND PROTOSTELLAR CORES WITH ALMA , 2014, 1410.3706.

[17]  P. Goldsmith,et al.  LOW VIRIAL PARAMETERS IN MOLECULAR CLOUDS: IMPLICATIONS FOR HIGH-MASS STAR FORMATION AND MAGNETIC FIELDS , 2013, 1308.5679.

[18]  Astrophysics,et al.  SMA OBSERVATIONS OF CLASS 0 PROTOSTARS: A HIGH ANGULAR RESOLUTION SURVEY OF PROTOSTELLAR BINARY SYSTEMS , 2013, 1304.0436.

[19]  O. Krause,et al.  A HERSCHEL AND APEX CENSUS OF THE REDDEST SOURCES IN ORION: SEARCHING FOR THE YOUNGEST PROTOSTARS , 2013, 1302.1203.

[20]  P. Ho,et al.  HIERARCHICAL FRAGMENTATION OF THE ORION MOLECULAR FILAMENTS , 2012, 1211.6842.

[21]  K. Flaherty,et al.  THE SPITZER SPACE TELESCOPE SURVEY OF THE ORION A AND B MOLECULAR CLOUDS. I. A CENSUS OF DUSTY YOUNG STELLAR OBJECTS AND A STUDY OF THEIR MID-INFRARED VARIABILITY , 2012, 1209.3826.

[22]  R. Kawabe,et al.  SUBSTELLAR-MASS CONDENSATIONS IN PRESTELLAR CORES , 2012, 1209.3801.

[23]  A. Goodman,et al.  Observing turbulent fragmentation in simulations: predictions for CARMA and ALMA , 2011, 1111.4209.

[24]  P. Caselli Observational Studies of Pre-Stellar Cores and Infrared Dark Clouds , 2011, Proceedings of the International Astronomical Union.

[25]  R. Klein,et al.  THE FORMATION OF LOW-MASS BINARY STAR SYSTEMS VIA TURBULENT FRAGMENTATION , 2010, 1010.3702.

[26]  Xuepeng Chen,et al.  R CrA SMM 1A: FRAGMENTATION IN A PRESTELLAR CORE , 2010, 1008.1529.

[27]  D. Johnstone,et al.  AN OBSERVED LACK OF SUBSTRUCTURE IN STARLESS CORES. II. SUPER-JEANS CORES , 2010, 1005.5169.

[28]  P. Caselli,et al.  Dynamics and depletion in thermally supercritical starless cores , 2009, 0908.2400.

[29]  D. Ward-Thompson,et al.  BIMA N2H+ 1–0 MAPPING OBSERVATIONS OF L183: FRAGMENTATION AND SPIN-UP IN A COLLAPSING, MAGNETIZED, ROTATING, PRESTELLAR CORE , 2009, 0906.3632.

[30]  Bonn,et al.  MAMBO Mapping Of Spitzer c2d Small Clouds And Cores , 2008, 0805.4205.

[31]  J. Kauffmann,et al.  Structural Analysis of Molecular Clouds: Dendrograms , 2008, 0802.2944.

[32]  Leiden,et al.  Observing the gas temperature drop in the high-density nucleus of L 1544 , 2007, 0705.0471.

[33]  C. Young,et al.  Submillimeter Common-User Bolometer Array Mapping of Spitzer c2d Small Clouds and Cores , 2006 .

[34]  S. Goodwin,et al.  Simulating star formation in molecular cores. II. The effects of different levels of turbulence , 2004, astro-ph/0405117.

[35]  R. Fisher A Turbulent Interstellar Medium Origin of the Binary Period Distribution , 2003, astro-ph/0303280.

[36]  David A. Williams,et al.  The molecular universe , 2002 .

[37]  P. Padoan,et al.  ul 2 00 2 The Stellar IMF from Turbulent Fragmentation , 2002 .

[38]  P. Padoan,et al.  The Stellar Initial Mass Function from Turbulent Fragmentation , 2000, astro-ph/0011465.

[39]  L. Mundy,et al.  Tracing the Mass during Low-Mass Star Formation. II. Modeling the Submillimeter Emission from Preprotostellar Cores , 2000, astro-ph/0006183.

[40]  F. Motte,et al.  The initial conditions of isolated star formation — III. Millimetre continuum mapping of pre-stellar cores , 1999 .

[41]  P. Andre',et al.  A submillimetre continuum survey of pre-protostellar cores , 1994 .

[42]  W. Bonnar,et al.  Boyle's Law and gravitational instability , 1956 .