Nonmonotone globalization of the finite-difference Newton-GMRES method for nonlinear equations

In this paper, we study nonmonotone globalization strategies, in connection with the finite-difference inexact Newton-GMRES method for nonlinear equations. We first define a globalization algorithm that combines nonmonotone watchdog rules and nonmonotone derivative-free linesearches related to a merit function, and prove its global convergence under the assumption that the Jacobian is nonsingular and that the iterations of the GMRES subspace method can be completed at each step. Then we introduce a hybrid stabilization scheme employing occasional line searches along positive bases, and establish global convergence towards a solution of the system, under the less demanding condition that the Jacobian is nonsingular at stationary points of the merit function. Through a set of numerical examples, we show that the proposed techniques may constitute useful options to be added in solvers for nonlinear systems of equations.

[1]  Homer F. Walker,et al.  NITSOL: A Newton Iterative Solver for Nonlinear Systems , 1998, SIAM J. Sci. Comput..

[2]  J. Dennis,et al.  A New Nonlinear Equations Test Problem , 1986 .

[3]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[4]  Nicholas I. M. Gould,et al.  A Multidimensional Filter Algorithm for Nonlinear Equations and Nonlinear Least-Squares , 2004, SIAM J. Optim..

[5]  Masao Fukushima,et al.  Regularized Newton Methods for Convex Minimization Problems with Singular Solutions , 2004, Comput. Optim. Appl..

[6]  V. Torczon,et al.  RANK ORDERING AND POSITIVE BASES IN PATTERN SEARCH ALGORITHMS , 1996 .

[7]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[8]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[9]  L. Grippo,et al.  Global convergence and stabilization of unconstrained minimization methods without derivatives , 1988 .

[10]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[11]  Luigi Grippo,et al.  Nonmonotone Globalization Techniques for the Barzilai-Borwein Gradient Method , 2002, Comput. Optim. Appl..

[12]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[13]  S. Dirkse,et al.  The path solver: a nommonotone stabilization scheme for mixed complementarity problems , 1995 .

[14]  M. Ferris,et al.  Nonmonotone stabilization methods for nonlinear equations , 1994 .

[15]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[16]  Homer F. Walker,et al.  Globalization Techniques for Newton-Krylov Methods and Applications to the Fully Coupled Solution of the Navier-Stokes Equations , 2006, SIAM Rev..

[17]  Stefania Bellavia,et al.  A switching-method for nonlinear systems , 1996 .

[18]  Marcos Raydan,et al.  Nonmonotone Spectral Methods for Large-Scale Nonlinear Systems , 2003, Optim. Methods Softw..

[19]  Yousef Saad,et al.  Convergence Theory of Nonlinear Newton-Krylov Algorithms , 1994, SIAM J. Optim..

[20]  M. Bartholomew-Biggs,et al.  Some effective methods for unconstrained optimization based on the solution of systems of ordinary differential equations , 1989 .

[21]  Homer F. Walker,et al.  Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..

[22]  L. Grippo,et al.  A nonmonotone line search technique for Newton's method , 1986 .

[23]  C. Lemaréchal,et al.  The watchdog technique for forcing convergence in algorithms for constrained optimization , 1982 .

[24]  Marco Sciandrone,et al.  On the Global Convergence of Derivative-Free Methods for Unconstrained Optimization , 2002, SIAM J. Optim..

[25]  Luigi Grippo,et al.  Nonmonotone derivative-free methods for nonlinear equations , 2007, Comput. Optim. Appl..

[26]  P. Brown A local convergence theory for combined inexact-Newton/finite-difference projection methods , 1987 .

[27]  Silvia Bonettini A nonmonotone inexact Newton method , 2005, Optim. Methods Softw..

[28]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[29]  M. Fukushima,et al.  A derivative-free line search and global convergence of Broyden-like method for nonlinear equations , 2000 .

[30]  L. Grippo,et al.  A class of nonmonotone stabilization methods in unconstrained optimization , 1991 .

[31]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[32]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[33]  Philippe L. Toint,et al.  Non-monotone trust-region algorithms for nonlinear optimization subject to convex constraints , 1997, Math. Program..

[34]  J. M. Martínez,et al.  Solving nonlinear systems of equations by means of quasi-neston methods with a nonmonotone stratgy ∗ , 1997 .

[35]  José Mario Martínez,et al.  Spectral residual method without gradient information for solving large-scale nonlinear systems of equations , 2006, Math. Comput..

[36]  William W. Hager,et al.  A Nonmonotone Line Search Technique and Its Application to Unconstrained Optimization , 2004, SIAM J. Optim..

[37]  Maria Grazia Gasparo,et al.  A nonmonotone hybrid method for nonlinear systems , 2000 .