Simple algorithm for adaptive refinement of three-dimensional finite element tetrahedral meshes
暂无分享,去创建一个
Kent L. Lawrence | Panos S. Shiakolas | S. N. Muthukrishnan | R. V. Nambiar | K. L. Lawrence | P. Shiakolas | S. Muthukrishnan | R. Nambiar
[1] J. Fish. The s-version of the finite element method , 1992 .
[2] K. L. Lawrence,et al. Closed-form stiffness matrices for the linear strain and quadratic strain tetrahedron finite elements , 1992 .
[3] Kent L. Lawrence,et al. An algorithm for adaptive refinement of triangular element meshes , 1993 .
[4] William H. Frey,et al. An apporach to automatic three‐dimensional finite element mesh generation , 1985 .
[5] J. Sullivan,et al. A normal offsetting technique for automatic mesh generation in three dimensions , 1993 .
[6] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[7] S. Lo. Volume discretization into tetrahedra—II. 3D triangulation by advancing front approach , 1991 .
[8] S. Lo. Volume discretization into tetrahedra-I. Verification and orientation of boundary surfaces , 1991 .
[9] E. K. Buratynski. A fully automatic three-dimensional mesh generator for complex geometries , 1990 .
[10] Nguyen-Van-Phai,et al. Automatic mesh generation with tetrahedron elements , 1982 .
[11] M. Rivara,et al. A 3-D refinement algorithm suitable for adaptive and multi-grid techniques , 1992 .
[12] Kent L. Lawrence,et al. An algorithm for adaptive refinement of tetrahedral finite element meshes , 1992 .
[13] K. L. Lawrence,et al. Closed-form error estimators for the linear strain and quadratic strain tetrahedron finite elements , 1993 .
[14] F. Stenger,et al. A lower bound on the angles of triangles constructed by bisecting the longest side , 1975 .