Multi-fidelity reinforcement learning framework for shape optimization

[1]  Teng Wu,et al.  A knowledge‐enhanced deep reinforcement learning‐based shape optimizer for aerodynamic mitigation of wind‐sensitive structures , 2021, Comput. Aided Civ. Infrastructure Eng..

[2]  Petros Koumoutsakos,et al.  Automating turbulence modelling by multi-agent reinforcement learning , 2021, Nature Machine Intelligence.

[3]  Yufei Zhang,et al.  Learning the aerodynamic design of supercritical airfoils through deep reinforcement learning , 2020, AIAA Journal.

[4]  Suraj Pawar,et al.  Distributed deep reinforcement learning for simulation control , 2020, Mach. Learn. Sci. Technol..

[5]  H. Ghraieb,et al.  Single-step deep reinforcement learning for open-loop control of laminar and turbulent flows , 2020, Physical Review Fluids.

[6]  Alexander Kuhnle,et al.  Direct shape optimization through deep reinforcement learning , 2019, J. Comput. Phys..

[7]  Alexander Kuhnle,et al.  A review on Deep Reinforcement Learning for Fluid Mechanics , 2019, Computers & Fluids.

[8]  J. Rabault,et al.  Robust active flow control over a range of Reynolds numbers using an artificial neural network trained through deep reinforcement learning , 2020, 2004.12417.

[9]  F. Toschi,et al.  Controlling Rayleigh–Bénard convection via reinforcement learning , 2020, Journal of turbulence.

[10]  Hui Xu,et al.  Deep reinforcement learning in fluid mechanics: A promising method for both active flow control and shape optimization , 2020, Journal of Hydrodynamics.

[11]  S. Verma,et al.  Restoring Chaos Using Deep Reinforcement Learning , 2019, Chaos.

[12]  M. Benosman,et al.  Reinforcement Learning-based Model Reduction for Partial Differential Equations , 2020 .

[13]  Jean Rabault,et al.  Exploiting locality and translational invariance to design effective deep reinforcement learning control of the 1-dimensional unstable falling liquid film , 2019, AIP Advances.

[14]  Alexander Kuhnle,et al.  Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach , 2019, Physics of Fluids.

[15]  Alexandre Allauzen,et al.  Control of chaotic systems by deep reinforcement learning , 2019, Proceedings of the Royal Society A.

[16]  Xiangyang Wang,et al.  Aerodynamic shape optimization using a novel optimizer based on machine learning techniques , 2019, Aerospace Science and Technology.

[17]  Jean Rabault,et al.  Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control , 2018, Journal of Fluid Mechanics.

[18]  Baskar Ganapathysubramanian,et al.  Flow Shape Design for Microfluidic Devices Using Deep Reinforcement Learning , 2018, ArXiv.

[19]  Bo Ren,et al.  Fluid directed rigid body control using deep reinforcement learning , 2018, ACM Trans. Graph..

[20]  Petros Koumoutsakos,et al.  Efficient collective swimming by harnessing vortices through deep reinforcement learning , 2018, Proceedings of the National Academy of Sciences.

[21]  Hossein Zare-Behtash,et al.  State-of-the-art in aerodynamic shape optimisation methods , 2018, Appl. Soft Comput..

[22]  Anil A. Bharath,et al.  Deep Reinforcement Learning: A Brief Survey , 2017, IEEE Signal Processing Magazine.

[23]  J. Martins,et al.  Multipoint Aerodynamic Shape Optimization Investigations of the Common Research Model Wing , 2015 .

[24]  Diego Rossinelli,et al.  Synchronisation through learning for two self-propelled swimmers , 2015, Bioinspiration & biomimetics.

[25]  Hajime Igarashi,et al.  Shape Optimization of Wideband Antennas for Microwave Energy Harvesters Using FDTD , 2015, IEEE Transactions on Magnetics.

[26]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[27]  Sergey Levine,et al.  Trust Region Policy Optimization , 2015, ICML.

[28]  K. Herwig,et al.  Optimizing moderator dimensions for neutron scattering at the spallation neutron source. , 2013, The Review of scientific instruments.

[29]  Eli Yablonovitch,et al.  Adjoint shape optimization applied to electromagnetic design. , 2013, Optics express.

[30]  J. Unkelbach,et al.  Aperture shape optimization for IMRT treatment planning , 2013, Physics in medicine and biology.

[31]  John Valasek,et al.  Reinforcement Learning of a Morphing Airfoil-Policy and Discrete Learning Analysis , 2008, J. Aerosp. Comput. Inf. Commun..

[32]  Peter Stone,et al.  Transfer Learning for Reinforcement Learning Domains: A Survey , 2009, J. Mach. Learn. Res..

[33]  John Valasek,et al.  Reinforcement Learning of Morphing Airfoils with Aerodynamic and Structural Effects , 2007, J. Aerosp. Comput. Inf. Commun..

[34]  Young Sun Kim,et al.  A Level Set Method for Shape Optimization of Electromagnetic Systems , 2009, IEEE Transactions on Magnetics.

[35]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[36]  E. Ng,et al.  Adjoint methods for electromagnetic shape optimization of the low-loss cavity for the International Linear Collider , 2005 .

[37]  O. Pironneau,et al.  SHAPE OPTIMIZATION IN FLUID MECHANICS , 2004 .

[38]  T. Pulliam,et al.  Multipoint and Multi-Objective Aerodynamic Shape Optimization , 2002 .

[39]  J. Samareh Survey of Shape Parameterization Techniques for High-Fidelity Multidisciplinary Shape Optimization , 2001 .

[40]  Yishay Mansour,et al.  Policy Gradient Methods for Reinforcement Learning with Function Approximation , 1999, NIPS.

[41]  Csaba Szepesvári,et al.  A Unified Analysis of Value-Function-Based Reinforcement-Learning Algorithms , 1999, Neural Computation.

[42]  Vijay R. Konda,et al.  Actor-Critic Algorithms , 1999, NIPS.

[43]  Yeh-Liang Hsu,et al.  A review of structural shape optimization , 1994 .

[44]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[45]  C. L. Ladson,et al.  Effects of independent variation of Mach and Reynolds numbers on the low-speed aerodynamic characteristics of the NACA 0012 airfoil section , 1988 .

[46]  R. Haftka,et al.  Structural shape optimization — a survey , 1986 .

[47]  Yunliang Ding,et al.  Shape optimization of structures: a literature survey , 1986 .

[48]  Hoar Frost,et al.  Low-Speed Aerodynamic Characteristics of NACA 0012 Aerofoi ] Section , including the Effects of Upper-Surface Roughness Simulating Hoar Frost , 1970 .