STABILIZATION OF SWITCHED LINEAR SYSTEMS

In this note, we study the stabilization problem of systems that switch among a finite set of controllable linear systems with arbitrary switching frequency. For both cases of known and unknown switching functions, feedback laws are designed to achieve exponential stability. For the later case, a method combining on-line adaptive estimation and feedback stabilization is developed in the controller design.

[1]  Stein Weissenberger Piecewise-quadratic and piecewise-linear Lyapunov functions for discontinuous systems† , 1969 .

[2]  D. Cheng,et al.  A note on overshoot estimation in pole placements , 2004 .

[3]  A. Morse Supervisory control of families of linear set-point controllers Part I. Exact matching , 1996, IEEE Trans. Autom. Control..

[4]  Raymond A. DeCarlo,et al.  Switched Controller Synthesis for the Quadratic Stabilisation of a Pair of Unstable Linear Systems , 1998, Eur. J. Control.

[5]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[6]  R. Decarlo,et al.  Asymptotic Stability of m-Switched Systems using Lyapunov-Like Functions , 1991, 1991 American Control Conference.

[7]  Shuzhi Sam Ge,et al.  Controllability and reachability criteria for switched linear systems , 2002, Autom..

[8]  Daizhan Cheng,et al.  On quadratic Lyapunov functions , 2003, IEEE Trans. Autom. Control..

[9]  M. Branicky Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..

[10]  A. Morse,et al.  A cyclic switching strategy for parameter-adaptive control , 1994, IEEE Trans. Autom. Control..

[11]  Yuguang Fang,et al.  Stabilization of continuous-time jump linear systems , 2002, IEEE Trans. Autom. Control..

[12]  S.M. Williams,et al.  Adaptive frequency domain control of PWM switched power line conditioner , 1990, Fifth Annual Proceedings on Applied Power Electronics Conference and Exposition.

[13]  Robert Shorten,et al.  Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for M stable second order linear time-invariant systems , 1999, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[14]  Clyde F. Martin,et al.  A Converse Lyapunov Theorem for a Class of Dynamical Systems which Undergo Switching , 1999, IEEE Transactions on Automatic Control.

[15]  Daniel Liberzon,et al.  Lie-Algebraic Stability Criteria for Switched Systems , 2001, SIAM J. Control. Optim..

[16]  H. Sira-Ramírez Nonlinear P-I controller design for switchmode DC-to-DC power converters , 1991 .

[17]  A. Morse,et al.  Basic problems in stability and design of switched systems , 1999 .

[18]  Zvi Artstein,et al.  Examples of Stabilization with Hybrid Feedback , 1996, Hybrid Systems.

[19]  Zhendong Sun,et al.  On reachability and stabilization of switched linear systems , 2001, IEEE Trans. Autom. Control..

[20]  Lei Guo,et al.  How much uncertainty can be dealt with by feedback? , 2000, IEEE Trans. Autom. Control..

[21]  Masayoshi Tomizuka,et al.  Learning hybrid force and position control of robot manipulators , 1993, IEEE Trans. Robotics Autom..

[22]  M. Branicky Stability of switched and hybrid systems , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[23]  A. Morse,et al.  Stability of switched systems: a Lie-algebraic condition ( , 1999 .

[24]  A. Morse,et al.  Stability of switched systems with average dwell-time , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[25]  Kumpati S. Narendra,et al.  Adaptive control using multiple models , 1997, IEEE Trans. Autom. Control..

[26]  Daizhan Cheng,et al.  Stabilization of planar switched systems , 2004, Syst. Control. Lett..

[27]  Pravin Varaiya,et al.  Smart cars on smart roads: problems of control , 1991, IEEE Trans. Autom. Control..

[28]  Eduardo Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional , 2001 .

[29]  Thomas A. Henzinger,et al.  Hybrid systems III : verification and control , 1996 .

[30]  F. Xue,et al.  Necessary and sufficient conditions for adaptive stablizability of jump linear systems , 2001, Commun. Inf. Syst..