Theoretical and experimental study of the dynamic behavior of a nonlinear Fabry-Perot interferrometer

We have studied theoretically and experimentally the dynamic behavior of a nonlinear Fabry-Perot interferrometer filled with a Kerr medium. The Fabry-Perot responses ranging from extremely transient to quasi-steady-state in various modes of operation are considered. The experimental results are in excellent agreement with theory. It is shown that the quasi-steady-state operation requires not only a medium response time much smaller than the cavity round-trip time, but also a characteristic time of the input intensity variation several hundred times larger than the cavity round-trip time. Even in the quasi-steady-state limit, optical switching is often featured by overshoot and ringing after switching. The switching speed is limited by the cavity buildup time.