q-Distributions on boxed plane partitions

We introduce elliptic weights of boxed plane partitions and prove that they give rise to a generalization of MacMahon’s product formula for the number of plane partitions in a box. We then focus on the most general positive degenerations of these weights that are related to orthogonal polynomials; they form three 2-D families. For distributions from these families, we prove two types of results. First, we construct explicit Markov chains that preserve these distributions. In particular, this leads to a relatively simple exact sampling algorithm. Second, we consider a limit when all dimensions of the box grow and plane partitions become large and prove that the local correlations converge to those of ergodic translation invariant Gibbs measures. For fixed proportions of the box, the slopes of the limiting Gibbs measures (that can also be viewed as slopes of tangent planes to the hypothetical limit shape) are encoded by a single quadratic polynomial.

[1]  Vladimir Turaev,et al.  Elliptic solutions of the Yang-Baxter equation and modular hypergeometric functions , 1997 .

[2]  S. Warnaar,et al.  Summation and transformation formulas for elliptic hypergeometric series , 2000, math/0001006.

[3]  Richard Kenyon,et al.  Lectures on Dimers , 2009, 0910.3129.

[4]  Nicolas Bonichon,et al.  Watermelon uniform random generation with applications , 2003, Theor. Comput. Sci..

[5]  K. Johansson Non-intersecting paths, random tilings and random matrices , 2000, math/0011250.

[6]  Michael J. Schlosser,et al.  “ Elliptic ” enumeration of nonintersecting lattice paths , 2006 .

[7]  P. Diaconis,et al.  Strong Stationary Times Via a New Form of Duality , 1990 .

[8]  J. Propp,et al.  A variational principle for domino tilings , 2000, math/0008220.

[9]  James Gary Propp Generalized domino-shuffling , 2003, Theor. Comput. Sci..

[10]  A. Okounkov,et al.  Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram , 2001, math/0107056.

[11]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[12]  R. Kenyon,et al.  Dimers and amoebae , 2003, math-ph/0311005.

[13]  M. L. Mehta,et al.  Matrices coupled in a chain: I. Eigenvalue correlations , 1998 .

[14]  C J Isham,et al.  Methods of Modern Mathematical Physics, Vol 1: Functional Analysis , 1972 .

[15]  G. Olshanski Difference operators and determinantal point processes , 2008, 0810.3751.

[16]  N. Destainville Entropy and boundary conditions in random rhombus tilings , 1998 .

[17]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[18]  R. Kenyon,et al.  Limit shapes and the complex Burgers equation , 2005, math-ph/0507007.

[19]  R. Mosseri,et al.  Configurational entropy of codimension-one tilings and directed membranes , 1997 .

[20]  R. Kenyon Local statistics of lattice dimers , 2001, math/0105054.

[21]  Grigori Olshanski,et al.  Asymptotics of Plancherel-type random partitions , 2007 .

[22]  Alexei Zhedanov,et al.  Spectral Transformation Chains and Some New Biorthogonal Rational Functions , 2000 .

[23]  V. Gorin,et al.  Nonintersecting paths and the Hahn orthogonal polynomial ensemble , 2008 .

[24]  James Gary Propp Generating random elements of finite distributive lattices , 1997, Electron. J. Comb..

[25]  Grigori Olshanski,et al.  Markov processes on partitions , 2004 .

[26]  Alexei Borodin,et al.  Shuffling algorithm for boxed plane partitions , 2008, 0804.3071.

[27]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[28]  R. Stanley,et al.  Enumerative Combinatorics: Index , 1999 .

[29]  David Bruce Wilson,et al.  Determinant algorithms for random planar structures , 1997, SODA '97.

[30]  Dana Randall,et al.  Markov chain algorithms for planar lattice structures , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[31]  Christian Krattenthaler Another Involution Principle-Free Bijective Proof of Stanley's Hook-Content Formula , 1999, J. Comb. Theory, Ser. A.

[32]  Michael Larsen,et al.  The Shape of a Typical Boxed Plane Partition , 1998, math/9801059.

[33]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[34]  Scott Sheffield,et al.  Random Surfaces , 2003, math/0304049.

[35]  K. Johansson Non-intersecting, simple, symmetric random walks and the extended Hahn kernel , 2004, math/0409013.

[36]  G. Olshanski,et al.  Asymptotics of Plancherel measures for symmetric groups , 1999, math/9905032.

[37]  Rene F. Swarttouw,et al.  The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report Fac , 1996, math/9602214.

[38]  S. Shlosman,et al.  Gibbs Ensembles of Nonintersecting Paths , 2008, 0804.0564.

[39]  K. Johansson,et al.  Eigenvalues of GUE Minors , 2006, math/0606760.

[40]  D. Wilson Mixing times of lozenge tiling and card shuffling Markov chains , 2001, math/0102193.

[41]  V. Gorin Non-intersecting paths and Hahn orthogonal polynomial ensemble , 2007, 0708.2349.