The Classical Capacity of Quantum Gaussian Gauge-Covariant Channels : Beyond i .
暂无分享,去创建一个
[1] Katalin Marton,et al. Error exponent for source coding with a fidelity criterion , 1974, IEEE Trans. Inf. Theory.
[2] Sekhar Tatikonda,et al. Sparse regression codes for multi-terminal source and channel coding , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[3] Nicolas Macris,et al. Proof of threshold saturation for spatially coupled sparse superposition codes , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).
[4] Shunsuke Ihara. Error Exponent for Coding of Memoryless Gaussian Sources with a Fidelity Criterion , 2000 .
[5] Amin Coja-Oghlan,et al. Chasing the k-colorability threshold , 2013 .
[6] Andrea Montanari,et al. Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.
[7] Sekhar Tatikonda,et al. The Rate-Distortion Function and Error Exponent of Sparse Regression Codes with Optimal Encoding , 2014 .
[8] R. Zamir,et al. Lattice Coding for Signals and Networks: A Structured Coding Approach to Quantization, Modulation and Multiuser Information Theory , 2014 .
[9] Florent Krzakala,et al. Approximate message-passing with spatially coupled structured operators, with applications to compressed sensing and sparse superposition codes , 2013, 1312.1740.
[10] Meir Feder,et al. Low Density Lattice Codes , 2006, ISIT.
[11] Lenka Zdeborová,et al. The condensation transition in random hypergraph 2-coloring , 2011, SODA.
[12] Sanghee Cho,et al. High-dimensional regression with random design, including sparse superposition codes , 2014 .
[13] Andrea Montanari,et al. The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, ISIT.
[14] Patrick Schulte,et al. Bandwidth Efficient and Rate-Matched Low-Density Parity-Check Coded Modulation , 2015, IEEE Transactions on Communications.
[15] Masanori Kawakita,et al. Least Squares Superposition Codes With Bernoulli Dictionary are Still Reliable at Rates up to Capacity , 2014, IEEE Trans. Inf. Theory.
[16] Florent Krzakala,et al. Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices , 2012, ArXiv.
[17] Andrea Montanari,et al. Graphical Models Concepts in Compressed Sensing , 2010, Compressed Sensing.
[18] Andrew R. Barron,et al. High-rate sparse superposition codes with iteratively optimal estimates , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.
[19] Sekhar Tatikonda,et al. Lossy Compression via Sparse Linear Regression: Performance Under Minimum-Distance Encoding , 2014, IEEE Transactions on Information Theory.
[20] R. Urbanke,et al. Polar codes are optimal for lossy source coding , 2009 .
[21] Ramji Venkataramanan,et al. Finite-sample analysis of Approximate Message Passing , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).
[22] Erdal Arikan,et al. Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.
[23] Alain Glavieux,et al. Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .
[24] Rüdiger L. Urbanke,et al. Modern Coding Theory , 2008 .
[25] Adel Javanmard,et al. Information-Theoretically Optimal Compressed Sensing via Spatial Coupling and Approximate Message Passing , 2011, IEEE Transactions on Information Theory.
[26] Andrew R. Barron,et al. Fast Sparse Superposition Codes Have Near Exponential Error Probability for $R<{\cal C}$ , 2014, IEEE Transactions on Information Theory.
[27] Uri Erez,et al. Achieving 1/2 log (1+SNR) on the AWGN channel with lattice encoding and decoding , 2004, IEEE Transactions on Information Theory.
[28] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[29] Ramji Venkataramanan,et al. Capacity-Achieving Sparse Superposition Codes via Approximate Message Passing Decoding , 2015, IEEE Transactions on Information Theory.
[30] Giuseppe Caire,et al. Bit-Interleaved Coded Modulation , 2008, Found. Trends Commun. Inf. Theory.
[31] Jun'ichi Takeuchi,et al. An improved upper bound on block error probability of least squares superposition codes with unbiased Bernoulli dictionary , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).
[32] Andrea Montanari,et al. The LASSO Risk for Gaussian Matrices , 2010, IEEE Transactions on Information Theory.
[33] Florent Krzakala,et al. Approximate Message-Passing Decoder and Capacity Achieving Sparse Superposition Codes , 2015, IEEE Transactions on Information Theory.
[34] Sekhar Tatikonda,et al. Lossy compression via sparse linear regression: Computationally efficient encoding and decoding , 2013, ISIT.
[35] Sanghee Cho,et al. APPROXIMATE ITERATIVE BAYES OPTIMAL ESTIMATES FOR HIGH-RATE SPARSE SUPERPOSITION CODES , 2013 .
[36] Sundeep Rangan,et al. Generalized approximate message passing for estimation with random linear mixing , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.
[37] Abbas El Gamal,et al. Network Information Theory , 2021, 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT).
[38] G. David Forney,et al. Modulation and Coding for Linear Gaussian Channels , 1998, IEEE Trans. Inf. Theory.
[39] Rüdiger L. Urbanke,et al. Spatially coupled ensembles universally achieve capacity under belief propagation , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.