Dynamic global path planning with uncertainty for mobile robots in manufacturing

We propose a probabilistic approach to the problem of global path planning with uncertainty for mobile robots in a dynamic manufacturing environment. To model the changing environment, we use a topological graph weighted by scalar cost functions. The cost functions consist of two elements: a deterministic cost for the known part of the robot's environment, and an uncertainty cost for the unknown part of the environment. Statistical models are built to quantify the unknown part of the environment, forming uncertainty costs for handling unexpected events. These uncertainty costs are dynamically updated by available sensor data when the mobile robot moves around. An optimal path (suboptimal in practice) is then found from the weighted topological graph using dynamic programming.

[1]  Rodney A. Brooks,et al.  Solving the find-path problem by good representation of free space , 1982, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[3]  Bernard Faverjon,et al.  The Mixed Approach for Motion Planning: Learning Global Strategies from a Local Planner , 1987, IJCAI.

[4]  Kang G. Shin,et al.  A variational dynamic programming approach to robot-path planning with a distance-safety criterion , 1988, IEEE J. Robotics Autom..

[5]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[6]  John J. Leonard,et al.  Directed Sonar Sensing for Mobile Robot Navigation , 1992 .

[7]  Huosheng Hu,et al.  Dynamic planning and real-time control for a mobile robot , 1992 .

[8]  Michael P. Wellman,et al.  Planning and Control , 1991 .

[9]  Rodney A. Brooks,et al.  Solving the Find-Path Problem by Good Representation of Free Space , 1983, Autonomous Robot Vehicles.

[10]  Meghanad D. Wagh,et al.  Robot path planning using intersecting convex shapes: Analysis and simulation , 1987, IEEE J. Robotics Autom..

[11]  Stephen Cameron,et al.  Using moments to plan paths for the Oxford AGV , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[12]  John Cesarone,et al.  Mobile robot routing with dynamic programming , 1989 .

[13]  D. Taghirad Ieee Transactions on Robotics and Automation 1 Robust Torque Control of Harmonic Drive Systems , 1997 .

[14]  Osamu Takahashi,et al.  Motion planning in a plane using generalized Voronoi diagrams , 1989, IEEE Trans. Robotics Autom..

[15]  Michael Brady,et al.  A bayesian approach to real-time obstacle avoidance for a mobile robot , 1995, Auton. Robots.

[16]  R. Bellman Dynamic programming. , 1957, Science.

[17]  Michael Brady,et al.  Sensor-based control of AGVs , 1990 .

[18]  Wyatt S. Newman,et al.  High speed robot control and obstacle avoidance using dynamic potential functions , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[19]  Penny Probert Smith,et al.  Distributed Real-Time Control of a Mobile Robot , 1995, Intell. Autom. Soft Comput..

[20]  Kenneth A. Fegley,et al.  Application of Dynamic Programming to Routing Problems , 1965, IEEE Trans. Syst. Sci. Cybern..

[21]  Narendra Ahuja,et al.  A potential field approach to path planning , 1992, IEEE Trans. Robotics Autom..

[22]  Kang G. Shin,et al.  A probabilistic approach to collision-free robot path planning , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[23]  Rajeev Sharma Locally efficient path planning in an uncertain, dynamic environment using a probabilistic model , 1992, IEEE Trans. Robotics Autom..

[24]  E. Angelopoulou,et al.  World model representations for mobile robots , 1992, Proceedings of the Intelligent Vehicles `92 Symposium.

[25]  Penny Probert Smith,et al.  LICAs: a modular architecture for intelligent control of mobile robots , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.