Rank-Constrained Fundamental Matrix Estimation by Polynomial Global Optimization Versus the Eight-Point Algorithm

The fundamental matrix can be estimated from point matches. The current gold standard is to bootstrap the eight-point algorithm and two-view projective bundle adjustment. The eight-point algorithm first computes a simple linear least squares solution by minimizing an algebraic cost and then projects the result to the closest rank-deficient matrix. We propose a single-step method that solves both steps of the eight-point algorithm. Using recent results from polynomial global optimization, our method finds the rank-deficient matrix that exactly minimizes the algebraic cost. In this special case, the optimization method is reduced to the resolution of very short sequences of convex linear problems which are computationally efficient and numerically stable. The current gold standard is known to be extremely effective but is nonetheless outperformed by our rank-constrained method for bootstrapping bundle adjustment. This is here demonstrated on simulated and standard real datasets. With our initialization, bundle adjustment consistently finds a better local minimum (achieves a lower reprojection error) and takes less iterations to converge.

[1]  R. Hartley Triangulation, Computer Vision and Image Understanding , 1997 .

[2]  Wojciech Chojnacki,et al.  Revisiting Hartley's Normalized Eight-Point Algorithm , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[4]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[5]  I. VÁŇOVÁ,et al.  Academy of Sciences of the Czech Republic , 2020, The Grants Register 2021.

[6]  J. Lasserre,et al.  Handbook on Semidefinite, Conic and Polynomial Optimization , 2012 .

[7]  Philip H. S. Torr,et al.  The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix , 1997, International Journal of Computer Vision.

[8]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[9]  Thomas S. Huang,et al.  Uniqueness and Estimation of Three-Dimensional Motion Parameters of Rigid Objects with Curved Surfaces , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  J. Lasserre,et al.  Optimisation globale et théorie des moments , 2000 .

[11]  Andrew Fitzgibbon,et al.  Invariant Fitting of Two View Geometry Or In Defiance of the 8 Point Algorithm , 2002 .

[12]  Thomas Weise,et al.  Global Optimization Algorithms -- Theory and Application , 2009 .

[13]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[14]  Wojciech Chojnacki,et al.  A new approach to constrained parameter estimation applicable to some computer vision problems , 2002 .

[15]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[16]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[17]  Didier Henrion,et al.  Globally Optimal Estimates for Geometric Reconstruction Problems , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[18]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[19]  Richard I. Hartley,et al.  In defence of the 8-point algorithm , 1995, Proceedings of IEEE International Conference on Computer Vision.

[20]  Olivier D. Faugeras,et al.  The fundamental matrix: Theory, algorithms, and stability analysis , 2004, International Journal of Computer Vision.

[21]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[22]  Joaquim Salvi Mas An approach to coded structured light to obtain three dimensional information , 2001 .

[23]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[24]  Didier Henrion,et al.  GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..

[25]  Xuelian Xiao New fundamental matrix estimation method using global optimization , 2010, 2010 International Conference on Computer Application and System Modeling (ICCASM 2010).

[26]  Alexandru Tupan,et al.  Triangulation , 1997, Comput. Vis. Image Underst..

[27]  B. Borchers CSDP, A C library for semidefinite programming , 1999 .

[28]  Didier Henrion,et al.  Convergent relaxations of polynomial matrix inequalities and static output feedback , 2006, IEEE Transactions on Automatic Control.

[29]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[30]  Didier Henrion,et al.  GloptiPoly: global optimization over polynomials with Matlab and SeDuMi , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[31]  Masatoshi Okutomi,et al.  A Practical Rank-Constrained Eight-Point Algorithm for Fundamental Matrix Estimation , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[33]  Zhengyou Zhang,et al.  Determining the Epipolar Geometry and its Uncertainty: A Review , 1998, International Journal of Computer Vision.

[34]  S. J. Benson,et al.  DSDP5 user guide - software for semidefinite programming. , 2006 .

[35]  Joaquim Salvi,et al.  An approach to coded structured light to obtain three dimensional information , 1998 .

[36]  Jiawang Nie,et al.  Optimality conditions and finite convergence of Lasserre’s hierarchy , 2012, Math. Program..

[37]  Masakazu Kojima,et al.  SDPA (SemiDefinite Programming Algorithm) User's Manual Version 6.2.0 , 1995 .

[38]  Thierry Viéville,et al.  Canonical Representations for the Geometries of Multiple Projective Views , 1996, Comput. Vis. Image Underst..

[39]  Adrien Bartoli,et al.  Nonlinear estimation of the fundamental matrix with minimal parameters , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[41]  Xavier Armangué,et al.  Overall view regarding fundamental matrix estimation , 2003, Image Vis. Comput..

[42]  Wojciech Chojnacki,et al.  A New Constrained Parameter Estimator: Experiments in Fundamental Matrix Computation , 2002, BMVC.

[43]  Roberto Cipolla,et al.  Estimating the Fundamental Matrix via Constrained Least-Squares: A Convex Approach , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Didier Henrion,et al.  GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi , 2003, TOMS.

[45]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[46]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[47]  P. Chen Why not use the levenberg-marquardt method for fundamental matrix estimation? , 2010 .

[48]  Ailsa H. Land,et al.  An Automatic Method of Solving Discrete Programming Problems , 1960 .

[49]  Pierre Hansen,et al.  Algorithms for the maximum satisfiability problem , 1987, Computing.

[50]  Andrew W. Fitzgibbon,et al.  Invariant Fitting of Two View Geometry , 2003, BMVC.