Rank-Constrained Fundamental Matrix Estimation by Polynomial Global Optimization Versus the Eight-Point Algorithm
暂无分享,去创建一个
Adrien Bartoli | Jean-José Orteu | Florian Bugarin | Didier Henrion | Jean B. Lasserre | Thierry Sentenac
[1] R. Hartley. Triangulation, Computer Vision and Image Understanding , 1997 .
[2] Wojciech Chojnacki,et al. Revisiting Hartley's Normalized Eight-Point Algorithm , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[3] Jean B. Lasserre,et al. Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..
[4] Kim-Chuan Toh,et al. SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .
[5] I. VÁŇOVÁ,et al. Academy of Sciences of the Czech Republic , 2020, The Grants Register 2021.
[6] J. Lasserre,et al. Handbook on Semidefinite, Conic and Polynomial Optimization , 2012 .
[7] Philip H. S. Torr,et al. The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix , 1997, International Journal of Computer Vision.
[8] Johan Löfberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .
[9] Thomas S. Huang,et al. Uniqueness and Estimation of Three-Dimensional Motion Parameters of Rigid Objects with Curved Surfaces , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[10] J. Lasserre,et al. Optimisation globale et théorie des moments , 2000 .
[11] Andrew Fitzgibbon,et al. Invariant Fitting of Two View Geometry Or In Defiance of the 8 Point Algorithm , 2002 .
[12] Thomas Weise,et al. Global Optimization Algorithms -- Theory and Application , 2009 .
[13] H. C. Longuet-Higgins,et al. A computer algorithm for reconstructing a scene from two projections , 1981, Nature.
[14] Wojciech Chojnacki,et al. A new approach to constrained parameter estimation applicable to some computer vision problems , 2002 .
[15] Aharon Ben-Tal,et al. Lectures on modern convex optimization , 1987 .
[16] J. Lasserre. Moments, Positive Polynomials And Their Applications , 2009 .
[17] Didier Henrion,et al. Globally Optimal Estimates for Geometric Reconstruction Problems , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.
[18] M. Laurent. Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .
[19] Richard I. Hartley,et al. In defence of the 8-point algorithm , 1995, Proceedings of IEEE International Conference on Computer Vision.
[20] Olivier D. Faugeras,et al. The fundamental matrix: Theory, algorithms, and stability analysis , 2004, International Journal of Computer Vision.
[21] Fred W. Glover,et al. Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..
[22] Joaquim Salvi Mas. An approach to coded structured light to obtain three dimensional information , 2001 .
[23] Eldon Hansen,et al. Global optimization using interval analysis , 1992, Pure and applied mathematics.
[24] Didier Henrion,et al. GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..
[25] Xuelian Xiao. New fundamental matrix estimation method using global optimization , 2010, 2010 International Conference on Computer Application and System Modeling (ICCASM 2010).
[26] Alexandru Tupan,et al. Triangulation , 1997, Comput. Vis. Image Underst..
[27] B. Borchers. CSDP, A C library for semidefinite programming , 1999 .
[28] Didier Henrion,et al. Convergent relaxations of polynomial matrix inequalities and static output feedback , 2006, IEEE Transactions on Automatic Control.
[29] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[30] Didier Henrion,et al. GloptiPoly: global optimization over polynomials with Matlab and SeDuMi , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..
[31] Masatoshi Okutomi,et al. A Practical Rank-Constrained Eight-Point Algorithm for Fundamental Matrix Estimation , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.
[32] Bernhard P. Wrobel,et al. Multiple View Geometry in Computer Vision , 2001 .
[33] Zhengyou Zhang,et al. Determining the Epipolar Geometry and its Uncertainty: A Review , 1998, International Journal of Computer Vision.
[34] S. J. Benson,et al. DSDP5 user guide - software for semidefinite programming. , 2006 .
[35] Joaquim Salvi,et al. An approach to coded structured light to obtain three dimensional information , 1998 .
[36] Jiawang Nie,et al. Optimality conditions and finite convergence of Lasserre’s hierarchy , 2012, Math. Program..
[37] Masakazu Kojima,et al. SDPA (SemiDefinite Programming Algorithm) User's Manual Version 6.2.0 , 1995 .
[38] Thierry Viéville,et al. Canonical Representations for the Geometries of Multiple Projective Views , 1996, Comput. Vis. Image Underst..
[39] Adrien Bartoli,et al. Nonlinear estimation of the fundamental matrix with minimal parameters , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[40] Kim-Chuan Toh,et al. Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..
[41] Xavier Armangué,et al. Overall view regarding fundamental matrix estimation , 2003, Image Vis. Comput..
[42] Wojciech Chojnacki,et al. A New Constrained Parameter Estimator: Experiments in Fundamental Matrix Computation , 2002, BMVC.
[43] Roberto Cipolla,et al. Estimating the Fundamental Matrix via Constrained Least-Squares: A Convex Approach , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[44] Didier Henrion,et al. GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi , 2003, TOMS.
[45] R. Baker Kearfott,et al. Introduction to Interval Analysis , 2009 .
[46] J. Lofberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).
[47] P. Chen. Why not use the levenberg-marquardt method for fundamental matrix estimation? , 2010 .
[48] Ailsa H. Land,et al. An Automatic Method of Solving Discrete Programming Problems , 1960 .
[49] Pierre Hansen,et al. Algorithms for the maximum satisfiability problem , 1987, Computing.
[50] Andrew W. Fitzgibbon,et al. Invariant Fitting of Two View Geometry , 2003, BMVC.