Detecting Money Market Bubbles

The existence of a self-financing trading strategy that replicates the money market account at a fixed future date at a lower cost than the current value of this account constitutes a money market bubble (MMB). Understanding whether a market exhibits an MMB is crucial, in particular, for derivative pricing. An MMB precludes the existence of a risk-neutral probability measure. The benchmark approach allows to study MMBs and is formulated under the real world probability measure. It does not require the existence of a risk neutral probability measure. Using a range of well-known stochastic volatility models, we study the existence of an MMB in the US economy, and find that the US market exhibits an MMB for all models considered that allow it. This suggests that for derivative pricing and hedging care should be taken when making assumptions pertaining to the existence of a risk-neutral probability measure. Less expensive portfolios are likely to exist for a wide range of long-term derivatives, as typical for pensions.

[1]  Analytic Pricing of Volatility-Equity Options within Affine Models: An Efficient Conditioning Technique , 2015 .

[2]  Norman J. Seeger,et al.  Empirical Analysis of Affine Versus Nonaffine Variance Specifications in Jump-Diffusion Models for Equity Indices , 2015 .

[3]  E. Platen,et al.  Pricing Currency Derivatives Under the Benchmark Approach , 2013 .

[4]  E. Platen,et al.  Functionals of Multidimensional Diffusions with Applications to Finance , 2013 .

[5]  E. Platen,et al.  A tractable model for indices approximating the growth optimal portfolio , 2012 .

[6]  P. Protter A Mathematical Theory of Financial Bubbles , 2012 .

[7]  Norman J. Seeger,et al.  Empirical Analysis of Affine vs. Non-Affine Variance Specifications in Jump-Diffusion Models for Equity Indices , 2012 .

[8]  Julien Hugonnier,et al.  Rational asset pricing bubbles and portfolio constraints , 2010, J. Econ. Theory.

[9]  Philip Protter,et al.  How to Detect an Asset Bubble , 2011, SIAM J. Financial Math..

[10]  Martino Grasselli,et al.  Riding on the smiles , 2010 .

[11]  Nicola Bruti-Liberati Numerical Solution of Stochastic Differential Equations with Jumps in Finance , 2010 .

[12]  E. Platen,et al.  Approximating the numéraire portfolio by naive diversification , 2010 .

[13]  H. Hulley The Economic Plausibility of Strict Local Martingales in Financial Modelling , 2010 .

[14]  P. Friz,et al.  Moment Explosions in Stochastic Volatility Models , 2010 .

[15]  Gabriel G. Drimus Options on realized variance by transform methods: a non-affine stochastic volatility model , 2009 .

[16]  A. Mijatović,et al.  On the martingale property of certain local martingales , 2009, 0905.3701.

[17]  Kris Jacobs,et al.  The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work so Well , 2009, Manag. Sci..

[18]  P. Protter,et al.  ASSET PRICE BUBBLES IN INCOMPLETE MARKETS * , 2008 .

[19]  D. Dijk,et al.  A comparison of biased simulation schemes for stochastic volatility models , 2008 .

[20]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[21]  E. Platen,et al.  CONSISTENT MARKET EXTENSIONS UNDER THE BENCHMARK APPROACH , 2009 .

[22]  Constantinos Kardaras,et al.  The numéraire portfolio in semimartingale financial models , 2007, Finance Stochastics.

[23]  Peter Christoffersen,et al.  Volatility Dynamics for the S&P500: Evidence from Realized Volatility, Daily Returns and Option Prices , 2007 .

[24]  M. Loewenstein,et al.  Options and Bubbles , 2007 .

[25]  Leif Andersen,et al.  Moment Explosions in Stochastic Volatility Models Moment Explosions in the Black–scholes and Exponential Lévy Model Moment Explosions in the Heston Model , 2022 .

[26]  D. Heath,et al.  A Benchmark Approach to Quantitative Finance , 2006 .

[27]  Mark A. Loewenstein,et al.  The Limits of Investor Behavior , 2006 .

[28]  David Hobson,et al.  Local martingales, bubbles and option prices , 2005, Finance Stochastics.

[29]  Michael S. Johannes,et al.  Model Specification and Risk Premia: Evidence from Futures Options , 2005 .

[30]  Michael S. Gibson,et al.  Dynamic Estimation of Volatility Risk Premia and Investor Risk Aversion from Option-Implied and Realized Volatilities , 2007 .

[31]  Peter E. Rossi,et al.  Bayesian analysis of stochastic volatility models with fat-tails and correlated errors , 2004 .

[32]  Mark Broadie,et al.  Model Speci fi cation and Risk Premiums : The Evidence from the Futures Options , 2004 .

[33]  C. S. Jones The dynamics of stochastic volatility: evidence from underlying and options markets , 2003 .

[34]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[35]  E. Platen Arbitrage in continuous complete markets , 2002, Advances in Applied Probability.

[36]  Jun Yu,et al.  Deviance Information Criterion for Comparing Stochastic Volatility Models , 2002 .

[37]  Nicholas G. Polson,et al.  MCMC Methods for Financial Econometrics , 2002 .

[38]  Nicholas G. Polson,et al.  The Impact of Jumps in Volatility and Returns , 2000 .

[39]  R. Jarrow,et al.  Arbitrage, martingales, and private monetary value , 2000 .

[40]  Jun Liu,et al.  Losing Money on Arbitrage: Optimal Dynamic Portfolio Choice in Markets with Arbitrage Opportunities , 2000 .

[41]  Mark Loewenstein,et al.  Rational Equilibrium Asset-Pricing Bubbles in Continuous Trading Models , 2000, J. Econ. Theory.

[42]  J. Werner,et al.  Asset price bubbles in Arrow-Debreu and sequential equilibrium , 2000 .

[43]  Alan L. Lewis Option Valuation under Stochastic Volatility , 2000 .

[44]  David S. Bates Post-'87 crash fears in the S&P 500 futures option market , 2000 .

[45]  D. Ahn,et al.  A Parametric Nonlinear Model of Term Structure Dynamics , 1999 .

[46]  D. Heath,et al.  Modelling the Stochastic Dynamics of Volatility for Equity Indices , 1999 .

[47]  Eckhard Platen A short term interest rate model , 1999, Finance Stochastics.

[48]  F. Delbaen,et al.  The fundamental theorem of asset pricing for unbounded stochastic processes , 1998 .

[49]  C. Sin Complications with stochastic volatility models , 1998, Advances in Applied Probability.

[50]  Arthur P. Dempster,et al.  The direct use of likelihood for significance testing , 1997, Stat. Comput..

[51]  S. Heston,et al.  A Simple New Formula for Options With Stochastic Volatility , 1997 .

[52]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[53]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[54]  Manuel S. Santos,et al.  Rational asset pricing bubbles , 1997 .

[55]  P. Kloeden,et al.  Numerical Solutions of Stochastic Differential Equations , 1995 .

[56]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[57]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[58]  Stephen F. LeRoy,et al.  Bubbles and Charges , 1992 .

[59]  John B. Long The numeraire portfolio , 1990 .

[60]  Daniel B. Nelson ARCH models as diffusion approximations , 1990 .

[61]  C. Gilles Charges as equilibrium prices and asset bubbles , 1989 .

[62]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[63]  J. Bernardo Expected Information as Expected Utility , 1979 .

[64]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[65]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[66]  John L. Kelly,et al.  A new interpretation of information rate , 1956, IRE Trans. Inf. Theory.

[67]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.