Reordering sparse matrices for parallel elimination

Abstract We consider the problem of finding equivalent reorderings of a sparse matrix so that the reordered matrix is suitable for parallel Gaussian elimination. The elimination tree structure is used as our parallel model. We show that the reordering scheme by Jess and Kees generates an elimination tree with minimum height among all such trees from the class of equivalent reorderings. A new height-reducing algorithm based on elimination tree rotation is also introduced. Experimental results are provided to compare these two approaches. The new reordering algorithm using rotation is shown to produce trees with minimum or near-minimum height. Yet, it requires significantly less reordering time.

[1]  Frans J. Peters,et al.  Parallel pivoting algorithms for sparse symmetric matrices , 1984, Parallel Comput..

[2]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[3]  Joseph W. Liu,et al.  A compact row storage scheme for Cholesky factors using elimination trees , 1986, TOMS.

[4]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[5]  Michael T. Heath,et al.  Sparse Cholesky factorization on a local-memory multiprocessor , 1988 .

[6]  Jochen A. G. Jess,et al.  A Data Structure for Parallel L/U Decomposition , 1982, IEEE Transactions on Computers.

[7]  Robert Schreiber,et al.  A New Implementation of Sparse Gaussian Elimination , 1982, TOMS.

[8]  Joseph W. H. Liu,et al.  Computational models and task scheduling for parallel sparse Cholesky factorization , 1986, Parallel Comput..

[9]  Iain S. Duff,et al.  Parallel implementation of multifrontal schemes , 1986, Parallel Comput..

[10]  Alan George,et al.  Communication results for parallel sparse Cholesky factorization on a hypercube , 1989, Parallel Comput..

[11]  Iain S. Duff,et al.  Sparse matrix test problems , 1982 .

[12]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[13]  G. Alaghband Multiprocessor sparse LU decomposition with controlled fill-in , 1986 .

[14]  Alfred V. Aho,et al.  Data Structures and Algorithms , 1983 .

[15]  Joseph W. H. Liu,et al.  Modification of the minimum-degree algorithm by multiple elimination , 1985, TOMS.

[16]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[17]  Edward G. Coffman,et al.  Computer and job-shop scheduling theory , 1976 .

[18]  D. Rose A GRAPH-THEORETIC STUDY OF THE NUMERICAL SOLUTION OF SPARSE POSITIVE DEFINITE SYSTEMS OF LINEAR EQUATIONS , 1972 .

[19]  Joseph W. H. Liu,et al.  Equivalent sparse matrix reordering by elimination tree rotations , 1988 .

[20]  O. Wing,et al.  Optimal parallel triangulation of a sparse matrix , 1979 .

[21]  Joseph W. H. Liu,et al.  A Linear Reordering Algorithm for Parallel Pivoting of Chordal Graphs , 1989, SIAM J. Discret. Math..