Data Assimilation in Cardiovascular Fluid–Structure Interaction Problems: An Introduction

Numerical methods for incompressible fluid dynamics have recently received a strong impulse from the applications to the cardiovascular system. In particular, fluid–structure interaction methods have been extensively investigated in view of an accurate and possibly fast simulation of blood flow in arteries and veins. This has been strongly motivated by the progressive interest in using numerical tools not only for understanding the general physiology and pathology of the vascular system. The opportunity offered by medical images properly preprocessed and elaborated to simulate blood flow in real patients highlighted the potential impact of scientific computing on the clinical practice. Therefore, in silico experiments are currently extensively used in bioengineering for completing (and sometimes driving) more traditional in vivo and in vitro investigations. Parallel to the development of numerical models, the need for quantitative analysis for diagnostic purposes has strongly stimulated the design of new methods and instruments for measurements and imaging. Thanks to these developments, a huge amount of data is nowadays available. Data Assimilation is the accurate merging of measures (including images) and numerical simulations for a mathematically sound integration of different sources of information. The outcome of this process includes both the patient-specific measures and the general principles underlying the development of mathematical models. In this way, simulations are adapted to the availability of individual data and are therefore supposed to be more reliable; measures are correspondingly filtered by the mathematical models assumed to describe the underlying phenomena, resulting in a (hopefully) significant reduction of the noise.

[1]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[2]  Max Gunzburger,et al.  Perspectives in flow control and optimization , 1987 .

[3]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[4]  Assad A Oberai,et al.  Elastic modulus imaging: some exact solutions of the compressible elastography inverse problem , 2007, Physics in medicine and biology.

[5]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[6]  Thomas A. Manteuffel,et al.  Weighted least-squares finite elements based on particle imaging velocimetry data , 2010, J. Comput. Phys..

[7]  G. Rozza,et al.  On the stability of the reduced basis method for Stokes equations in parametrized domains , 2007 .

[8]  S. Salsa Partial Differential Equations in Action: From Modelling to Theory , 2010 .

[9]  Christian Vergara,et al.  A Variational Approach for Estimating the Compliance of the Cardiovascular Tissue: An Inverse Fluid-Structure Interaction Problem , 2011, SIAM J. Sci. Comput..

[10]  D. Zwillinger Matrix Riccati Equations , 1992 .

[11]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[12]  K. Kunisch,et al.  Numerical solutions for optimal control of monodomain equations , 2009 .

[13]  Alfio Quarteroni,et al.  Complex Systems in Biomedicine , 2006 .

[14]  K. Kunisch,et al.  Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions , 2013 .

[15]  Gene H. Golub,et al.  Matrix computations , 1983 .

[16]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[17]  Karsten Urban,et al.  A new error bound for reduced basis approximation of parabolic partial differential equations , 2012 .

[18]  Christian Vergara,et al.  Flow rate boundary problems for an incompressible fluid in deformable domains: Formulations and solution methods , 2010 .

[19]  Assad A. Oberai,et al.  Adjoint‐weighted variational formulation for the direct solution of inverse problems of general linear elasticity with full interior data , 2010 .

[20]  Jeffrey Humpherys,et al.  A Fresh Look at the Kalman Filter , 2012, SIAM Rev..

[21]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[22]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[23]  Per Christian Hansen,et al.  Rank-Deficient and Discrete Ill-Posed Problems , 1996 .

[24]  J. Wolfowitz,et al.  Introduction to the Theory of Statistics. , 1951 .

[25]  K. Hinsch Three-Dimensional Particle Velocimetry , 1995 .

[26]  Kenichi Funamoto,et al.  Reproduction of pressure field in ultrasonic‐measurement‐integrated simulation of blood flow , 2013, International journal for numerical methods in biomedical engineering.

[27]  Karl Kunisch,et al.  Estimation Techniques for Distributed Parameter Systems , 1989 .

[28]  Y. Marzouk,et al.  Large-Scale Inverse Problems and Quantification of Uncertainty , 1994 .

[29]  Alfio Quarteroni,et al.  Cardiovascular mathematics : modeling and simulation of the circulatory system , 2009 .

[30]  M. Gunzburger,et al.  Accuracy of least-squares methods for the Navier-Stokes equations , 1993 .

[31]  K. Kunisch,et al.  Optimal control of the bidomain system (II): uniqueness and regularity theorems for weak solutions , 2013 .

[32]  Alessandro Veneziani,et al.  Inverse Problems in Cardiovascular Mathematics , 2013 .

[33]  H. Abou-Kandil,et al.  Matrix Riccati Equations in Control and Systems Theory , 2003, IEEE Transactions on Automatic Control.

[34]  P. Bochev Analysis of Least-Squares Finite Element Methods for the Navier--Stokes Equations , 1997 .

[35]  Marina Piccinelli,et al.  Applications of variational data assimilation in computational hemodynamics , 2012 .

[36]  Jan Modersitzki,et al.  FAIR: Flexible Algorithms for Image Registration , 2009 .

[37]  A. Veneziani,et al.  Uncertainty quantification for data assimilation in a steady incompressible Navier-Stokes problem , 2013 .

[38]  D. Chapelle,et al.  Galerkin approximation with proper orthogonal decomposition : new error estimates and illustrative examples , 2012 .

[39]  David Kilpatrick,et al.  Estimation of the Bidomain Conductivity Parameters of Cardiac Tissue From Extracellular Potential Distributions Initiated by Point Stimulation , 2010, Annals of Biomedical Engineering.

[40]  R. Glowinski,et al.  Exact and approximate controllability for distributed parameter systems , 1995, Acta Numerica.

[41]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[42]  W. R. Taylor,et al.  FLOW AND ATHEROSCLEROSIS , 2010 .

[43]  Otmar Scherzer,et al.  The use of Morozov's discrepancy principle for Tikhonov regularization for solving nonlinear ill-posed problems , 1993, Computing.

[44]  Bert Fristedt,et al.  Filtering and prediction , 2007 .

[45]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[46]  F. NOBILE,et al.  An Effective Fluid-Structure Interaction Formulation for Vascular Dynamics by Generalized Robin Conditions , 2008, SIAM J. Sci. Comput..

[47]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[48]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[49]  H. Banks A Functional Analysis Framework for Modeling, Estimation and Control in Science and Engineering , 2012 .

[50]  Ionel M. Navon,et al.  Data Assimilation for Geophysical Fluids , 2009 .

[51]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[52]  P. C. Franzone,et al.  A PARALLEL SOLVER FOR REACTION-DIFFUSION SYSTEMS IN COMPUTATIONAL ELECTROCARDIOLOGY , 2004 .

[53]  P. Moireau,et al.  Sequential parameter estimation for fluid–structure problems: Application to hemodynamics , 2012, International journal for numerical methods in biomedical engineering.

[54]  B. Fristedt,et al.  Filtering and Prediction: A Primer , 2007 .

[55]  Roland Glowinski,et al.  Exact and Approximate Controllability for Distributed Parameter Systems: Index of subjects , 2008 .

[56]  Giovanni Paolo Galdi,et al.  Hemodynamical Flows: Modeling, Analysis and Simulation , 2008 .

[57]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[58]  Roland Glowinski,et al.  Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach (Encyclopedia of Mathematics and its Applications) , 2008 .

[59]  Alejandro F. Frangi,et al.  Personalization of a cardiac electromechanical model using reduced order unscented Kalman filtering from regional volumes , 2013, Medical Image Anal..

[60]  Pavel B. Bochev,et al.  Least-Squares Finite Element Methods , 2009, Applied mathematical sciences.

[61]  K. Hoffmann,et al.  Optimal Control of Partial Differential Equations , 1991 .

[62]  Damiano Lombardi,et al.  Reduced-Order Modeling based on Approximated Lax Pairs , 2012 .

[63]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[64]  Alessandro Veneziani,et al.  Inverse problems in Cardiovascular Mathematics: toward patient‐specific data assimilation and optimization , 2013, International journal for numerical methods in biomedical engineering.

[65]  Arye Nehorai,et al.  Estimating Electrical Conductivity Tensors of Biological Tissues Using Microelectrode Arrays , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[66]  R. Dwight Bayesian inference for data assimilation using least-squares finite element methods , 2010 .

[67]  A. Quarteroni,et al.  A reduced computational and geometrical framework for inverse problems in hemodynamics , 2013, International journal for numerical methods in biomedical engineering.

[68]  Daniela Calvetti,et al.  Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing , 2007 .

[69]  Christian Vergara,et al.  A New Approach to Numerical Solution of Defective Boundary Value Problems in Incompressible Fluid Dynamics , 2008, SIAM J. Numer. Anal..

[70]  D. Chapelle,et al.  Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems , 2011 .

[71]  Kaare Brandt Petersen,et al.  The Matrix Cookbook , 2006 .

[72]  Alessandro Veneziani,et al.  A Variational Data Assimilation Procedure for the Incompressible Navier-Stokes Equations in Hemodynamics , 2011, Journal of Scientific Computing.

[73]  Jihui Zhang,et al.  Infinitely many small solutions for the p(x)-Laplacian operator with nonlinear boundary conditions , 2013 .

[74]  Bo Einarsson Accuracy and Reliability in Scientific Computing , 2005, Software, Environments, Tools.