A partial order semantics approach to the clock explosion problem of timed automata

We present a new approach to the symbolic model checking of timed automata based on a partial order semantics. It relies on event zones that use vectors of event occurrences instead of clock zones that use vectors of clock values grouped in polyhedral clock constraints. We provide a description of the different congruences that arise when we consider an independence relation in a timed framework. We introduce a new abstraction, called catchup equivalence which is defined on event zones and which can be seen as an implementation of one of the (more abstract) previous congruences. This formal language approach helps clarifying what the issues are and which properties abstractions should have. The catchup equivalence yields an algorithm to check emptiness which has the same complexity bound in the worst case as the algorithm to test emptiness in the classical semantics of timed automata. Our approach works for the class of timed automata proposed by Alur-Dill, except for state invariants (an extension including state invariants is discussed informally). First experiments show that the approach is promising and may yield very significant improvements.

[1]  Ruurd Kuiper,et al.  Partial-order Reduction Techniques for Real-time Model Checking , 1998, Formal Aspects of Computing.

[2]  Patrice Godefroid,et al.  Partial-Order Methods for the Verification of Concurrent Systems , 1996, Lecture Notes in Computer Science.

[3]  David L. Dill,et al.  Timing Assumptions and Verification of Finite-State Concurrent Systems , 1989, Automatic Verification Methods for Finite State Systems.

[4]  Robert de Simone,et al.  CONCUR'98 Concurrency Theory , 1998, Lecture Notes in Computer Science.

[5]  Peter Niebert,et al.  ELSE: A New Symbolic State Generator for Timed Automata , 2003, FORMATS.

[6]  Stavros Tripakis,et al.  Model Checking of Real-Time Reachability Properties Using Abstractions , 1998, TACAS.

[7]  Joseph Sifakis,et al.  Compiling Real-Time Specifications into Extended Automata , 1992, IEEE Trans. Software Eng..

[8]  Doron A. Peled,et al.  All from One, One for All: on Model Checking Using Representatives , 1993, CAV.

[9]  Wang Yi,et al.  UPPAAL - present and future , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[10]  Wang Yi,et al.  Partial Order Reductions for Timed Systems , 1998, CONCUR.

[11]  Wolfgang Reisig,et al.  Application and Theory of Petri Nets , 1982, Informatik-Fachberichte.

[12]  Florence Pagani Ordres partiels pour la vérification de systèmes temps réel , 1997 .

[13]  Kim G. Larsen,et al.  Static Guard Analysis in Timed Automata Verification , 2003, TACAS.

[14]  Antti Valmari,et al.  A stubborn attack on state explosion , 1990, Formal Methods Syst. Des..

[15]  Martín Abadi,et al.  An old-fashioned recipe for real time , 1994, TOPL.

[16]  Tomohiro Yoneda,et al.  Efficient Verification of Parallel Real-Time Systems , 1993, CAV.

[17]  Conrado Daws,et al.  Reducing the number of clock variables of timed automata , 1996, RTSS.

[18]  Denis Lugiez,et al.  A partial order semantics approach to the clock explosion problem of timed automata , 2005, Theor. Comput. Sci..

[19]  K. Roberts,et al.  Thesis , 2002 .

[20]  Edmund M. Clarke,et al.  Partial order reduction for verification of timed systems , 1999 .

[21]  Navendu Jain,et al.  Verification of Timed Automata via Satisfiability Checking , 2002, FTRTFT.

[22]  Oded Maler,et al.  Job-Shop Scheduling Using Timed Automata , 2001, CAV.

[23]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[24]  Denis Lugiez,et al.  Local First Search - A New Paradigm for Partial Order Reductions , 2001, CONCUR.

[25]  Conrado Daws Optikron: A Tool Suite for Enhancing Model-Checking of Real-Time Systems , 1998, CAV.

[26]  Sergio Yovine,et al.  KRONOS: a verification tool for real-time systems , 1997, International Journal on Software Tools for Technology Transfer.

[27]  Patricia Bouyer,et al.  Timed Automata May Cause Some Troubles , 2002 .

[28]  Volker Diekert,et al.  The Book of Traces , 1995 .

[29]  Antti Valmari,et al.  Stubborn sets for reduced state space generation , 1991, Applications and Theory of Petri Nets.

[30]  Wang Yi,et al.  Efficient Timed Reachability Analysis using Clock Difference Diagrams , 1998 .

[31]  Chris J. Myers,et al.  Verification of Timed Systems Using POSETs , 1998, CAV.

[32]  Thomas A. Henzinger,et al.  Symbolic Model Checking for Real-Time Systems , 1994, Inf. Comput..

[33]  P. S. Thiagarajan,et al.  Product Interval Automata: A Subclass of Timed Automata , 1999, FSTTCS.

[34]  Marius Minea,et al.  Partial Order Reduction for Model Checking of Timed Automata , 1999, CONCUR.

[35]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..